코시-아다마르 정리
관련 문서 둘러보기 |
미적분학 |
---|
코시-아다마르 정리(Cauchy-Hadamard theorem, -定理)는 해석학의 기초적인 정리로, 거듭제곱 급수의 수렴 반경에 대한 정보를 제공한다. 프랑스의 수학자 오귀스탱 루이 코시와 자크 아다마르의 이름이 붙어 있다.
공식화
[편집]코시-아다마르 정리는 다음과 같이 공식화할 수 있다.[1]:73 적당한 복소수 수열 {cn}에 대해, 다음의 거듭제곱 급수
의 수렴 반경 R은 다음 식으로 주어진다.
증명
[편집]으로 두고 근 판정법을 적용하면 다음과 같이 바로 증명할 수 있다.[1]
따름정리
[편집]극한의 계산을 편하게 할 수 있는 따름정리를 곧바로 유도할 수 있다. 수열의 비와 근 사이에 성립하는 다음의 일반적인 부등식[1]:68을 보면,
다음 극한이 존재할 경우,
위 부등식에서 바깥의 두 상극한과 하극한이 같아져서 네 식이 모두 같아지므로 코시-아다마르 정리에 의해 다음이 성립한다.
각주
[편집]- ↑ 가 나 다 Rudin, Walter (1976). 《Principles of mathematical analysis》. International Series in Pure and Applied Mathematics (영어) 3판. McGraw-Hill. ISBN 978-0-07-054235-8. MR 0385023. Zbl 0346.26002. 2014년 10월 6일에 원본 문서에서 보존된 문서. 2014년 10월 6일에 확인함.