Suzaku (satellite)

Description de cette image, également commentée ci-après
L'observatoire à rayons X Suzaku.
Données générales
Organisation Drapeau du Japon Agence d'exploration aérospatiale japonaise (JAXA)
Domaine Rayonnement X
Type de mission Télescope à rayons X
Autres noms ASTRO-E2
Lancement
Lanceur M-V # 6
Fin de mission
Durée 10 ans, 1 mois et 16 jours
Durée de vie 2 ans (mission primaire)
Identifiant COSPAR 2005-025A
Site www.jaxa.jp/projects/sat/astro_e2
Caractéristiques techniques
Masse au lancement 1 706 kg
Contrôle d'attitude Stabilisé sur 3 axes
Source d'énergie Panneaux solaires
Orbite
Orbite Circulaire
Altitude 550 km
Période de révolution 96 minutes
Inclinaison 31°

Suzaku ou ASTRO-E2 est un télescope spatial à rayons X développé par l'Agence d'exploration aérospatiale japonaise (JAXA) qui est lancé le par le lanceur M-V # 6 depuis la base de lancement d'Uchinoura. Un premier lancement effectué par le lanceur M-V # 4 le est un échec et une copie du satellite est construite pour remplacer le télescope perdu[1].

Caractéristiques techniques[modifier | modifier le code]

Le satellite emporte cinq télescopes à rayons X mous et un télescope à rayons X durs. L'instrument principal XRS est un spectromètre à haute résolution pour rayonnement X. C'est une réalisation conjointe de la JAXA et de la NASA.

Le détecteur infrarouge est porté à la température de 60 mK. Cette température record pour un satellite en orbite est obtenue grâce à un système de refroidissement à 4 étages comprenant : un refroidisseur Stirling, un cryostat à néon solide (17 K), un cryostat à hélium liquide superfluide (1,3 K) et un réfrigérateur à désaimantation adiabatique[2] (60 mK). L'élément réfrigérant de ce dernier, un sel paramagnétique de 920 g en sulfate d'ammonium et de fer, devant être recyclé pendant 49 minutes toutes les 38 heures, le temps utile pour les expériences est estimé à 97,9 %, avec une régulation de température au μK près. Une résolution de 7 eV sur les raies d'une source X du fer 55 (5 900 eV) est reportée en vol sur chacun des 32 détecteurs embarqués (microcalorimètres à cible en tellurure de mercure). L'action du rayonnement cosmique explique cette légère dégradation par rapport aux mesures de qualification au sol (résolution de 6 eV)[3].

Déroulement de la mission[modifier | modifier le code]

Après son lancement le satellite fonctionne parfaitement durant les deux premières semaines. Durant cette phase de qualification, l'instrument XRS, premier spectromètre X à microcalorimètres (bolomètres) à être placé en orbite, atteint la température de 60 mK. À partir du des dysfonctionnements dans la chaîne de refroidissement cryogénique du spectromètre à rayons X (XRS - X-Ray Spectrometer) se manifestent. Ils aboutissent le à l'évaporation complète de l'hélium liquide utilisé pour refroidir les détecteurs de l'instrument principal XRS, entraînant l'arrêt de celui-ci. Les deux autres instruments, le spectromètre imageur à rayons X (XIS - X-ray Imaging Spectrometer) et le détecteur à rayons X durs (HXD - Hard X-ray Spectrometer), ne sont pas touchés. Il est prévu qu'une nouvelle version du XRS, le spectromètre à rayons X mous (SXS - Soft X-ray Spectrometer), soit installée dans le futur observatoire spatial à rayons X, ASTRO-H, dont le lancement est planifié pour 2016.

Notes et références[modifier | modifier le code]

  1. (en) Kevin Boyce, « ASTRO-E Launch », NASA Goddard Space Flight Center, (consulté le )
  2. J. Bossy, « Refroidissement par Désaimantation Adiabatique», cours donné à l'école sur la Détection des Rayonnements à Très Basse Température (DRTBT-1999)
  3. R.L. Kelley et al., « The Suzaku High Resolution X-Ray Spectrometer », Publ. Astron. Soc. Jap. 59 (2007) S77-S112

Sources[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Liens externes[modifier | modifier le code]