Équilibre de phases

Diagramme de phases du couple titane (Ti) - nickel (Ni). Les courbes délimitant les divers domaines représentent les conditions de transition de phase. Dans certains domaines, plusieurs phases peuvent coexister dans un équilibre stable.

En physique, et plus particulièrement en thermodynamique, un équilibre de phases est un état de la matière dans lequel deux phases ou plus coexistent sans évolution.

Un diagramme de phases est un diagramme représentant les domaines d'existence et de coexistence des phases d'un corps pur ou d'un mélange en fonction des conditions opératoires de pression, température et composition. La règle des phases permet de déterminer le nombre maximal de phases pouvant coexister selon les conditions opératoires, ainsi que le nombre de conditions qu'un opérateur peut faire évoluer indépendamment l'une de l'autre sans provoquer de transition de phase.

Deux phases sont en équilibre si elles ont atteint simultanément :

  • un équilibre mécanique : elles ont la même pression ;
  • un équilibre thermique : elles ont la même température ;
  • un équilibre diffusif : le potentiel chimique de chaque espèce chimique est homogène entre les deux phases.

Cette dernière condition est équivalente, pour chaque espèce, à l'homogénéité de sa fugacité entre les phases.

Sous l'hypothèse simplificatrice de la solution idéale, l'équilibre liquide-vapeur peut être calculé par les loi de Raoult et loi de Henry. L'équation de Schröder-van Laar permet de calculer les équilibres liquide-solide. Les lois permettant de calculer les propriétés colligatives donnent l'évolution des pression et température d'équilibre de phases d'un solvant liquide en présence d'un soluté très dilué.

Définitions[modifier | modifier le code]

États et phases[modifier | modifier le code]

États de la matière et changements d'état[modifier | modifier le code]

Selon les conditions de pression, température et composition (conditions opératoires), la matière peut se présenter sous plusieurs formes appelées états de la matière, dont les principaux, étudiés en thermodynamique, sont le gaz, le liquide et le solide. L'eau, par exemple, peut se présenter sous forme de glace, qui est son état solide, de liquide, ou de vapeur, qui est son état gazeux. Aux hautes pressions et températures, au-delà du point critique, les états gazeux et liquide ne se distinguent plus[1] : cet état est appelé état supercritique[2]. Le point critique de l'eau se situe à 220,87 × 105 Pa et 374,1 °C[1].

Le passage d'un état à un autre est appelé changement d'état. Les principaux changements d'état sont[3] : la vaporisation, de l'état liquide à l'état gazeux, la liquéfaction ou condensation liquide, de l'état gazeux à l'état liquide, la fusion, de l'état solide à l'état liquide, la solidification, de l'état liquide à l'état solide, la sublimation, de l'état solide à l'état gazeux, et la condensation solide, de l'état gazeux à l'état solide.

Un changement d'état d'un corps pur s'effectue à température et pression constantes. À température constante, un changement d'état d'un mélange s'effectue à pression variable ; à pression constante il s'effectue à température variable. Il existe des cas particuliers dans lesquels le changement d'état d'un mélange s'effectue à pression et température constantes, le mélange se comportant alors comme un corps purs : c'est notamment le cas des azéotropes pour les changements liquide-vapeur, et des points de fusion congruents pour les changements liquide-solide[4]. Dans les hétéroazéotropes, un gaz se condense en deux phases liquides distinctes, de même que dans des eutectiques, un liquide se condense en deux phases solides distinctes.

Phases et transitions de phases[modifier | modifier le code]

Selon les conditions de pression, température et composition (conditions opératoires), un même état peut se présenter sous plusieurs formes appelées phases. Pour un corps pur (composé d'une seule espèce chimique) comme pour un mélange (composé de plusieurs espèces chimiques), il n'existe qu'une seule phase gazeuse : la diffusion de la matière induit naturellement que deux gaz mis en contact, quels qu'ils soient, se mélangent intimement pour former un système homogène.

Les corps purs ne présentent qu'une seule phase liquide, quelles que soient les conditions opératoires, à l'exception notable de certains isotopes de l'hélium présentant, en plus du liquide ordinaire, une phase liquide superfluide aux très basses températures (quelques kelvins)[5]. Les mélanges peuvent présenter plusieurs phases liquides simultanément. Par exemple, un mélange d'huile et d'eau constitue deux phases liquides distinctes : une phase liquide organique et une phase liquide aqueuse non miscibles (dans les faits, chacune des deux phases contient une infime quantité de l'autre phase dissoute)[6].

Les corps purs et les mélanges peuvent présenter plusieurs phases solides. L'eau pure solide (glace), par exemple, présente, selon les conditions opératoires, plus de onze formes cristallines qui constituent autant de phases solides distinctes[7]. Les mélanges (alliages) de métaux présentent souvent, selon les conditions opératoires, de multiples formes cristallines qui sont autant de phases solides. La faculté d'un corps simple de se présenter sous plusieurs formes solides est appelée allotropie (cas du carbone avec, entre autres, le graphite et le diamant)[8],[9], pour un corps composé elle est appelée polymorphisme (cas du carbonate de calcium avec l'aragonite, la calcite et la vatérite)[9].

Lorsque les conditions opératoires sont modifiées, un matériau peut changer de phase. Ce changement est appelé transition de phase[10]. Un changement d'état est une transition de phase, mais toutes les transitions de phase ne s'accompagnent pas nécessairement d'un changement d'état. Par exemple, la transition d'une forme de glace de l'eau à une autre est une transition de phase dans laquelle l'état de l'eau reste l'état solide.

Continuité, homogénéité et dispersion[modifier | modifier le code]

Une phase peut être définie comme une « partie d'un système qui, à l'échelle macroscopique, peut être considérée comme homogène[11]. » Dans cette définition, les propriétés de la phase ne dépendent pas de la position dans la phase, et toute propriété a donc la même valeur en tout point du système. Ce n'est pas le cas dans la réalité. Par exemple, par effet de la gravité, la pression d'une colonne de fluide n'est pas la même en tête et en pied de colonne, ce qu'énonce la loi de l'hydrostatique. Cette différence de pression peut entrainer, surtout pour les fluides compressibles comme les gaz, une importante variation de masse volumique au long de la colonne. Dans une colonne d'eau liquide de 10 m, par exemple, la différence de pression est d'environ 1 bar entre le pied et la tête de la colonne ; si la pression en tête de colonne est la pression atmosphérique, une bulle d'air présente dans cette colonne a une masse volumique deux fois plus importante en pied qu'en tête. L'hypothèse de l'homogénéité des propriétés est raisonnable sur de petits volumes de phase dans lesquels, par exemple, l'effet de la loi de l'hydrostatique peut être négligée : dans un verre d'eau, la pression en fond de verre peut être considérée comme égale à la pression de surface. Cette hypothèse est généralement retenue en thermodynamique, étant donné que l'équilibre de phases est étudié dans les parages immédiats des interfaces entre ces phases ; de plus, dans le cadre d'une modélisation de la phase, elle permet de simplifier la mise en équation, en évitant de faire dépendre les propriétés du fluide de son emplacement dans l'espace. Toutefois, le système ne peut être trop petit, car à une certaine échelle l'effet de la tension superficielle ne peut plus être négligé et doit être pris en compte[11].

Une phase peut cependant être dispersée dans une autre phase. Une phase dispersée se présente comme un ensemble de sous-domaines séparés les uns des autres par une autre phase et ayant tous les mêmes propriétés (état, pression, température, composition, forme cristalline, masse volumique, etc.). L'ensemble de ces sous-domaines est considéré comme une phase unique. Par exemple, un précipité ou une suspension est une phase solide divisée en petits éléments dans une phase liquide ; une émulsion est une phase liquide divisée en gouttelettes dans une autre phase liquide ; un aérosol est une phase liquide divisée en gouttelettes dans une phase gazeuse[12].

Une phase peut aussi être définie comme un « arrangement des constituants d'un milieu dans lequel les propriétés mécaniques, thermodynamiques, électriques et magnétiques varient continûment[13]. » La continuité signifie qu'il n'y a pas de « saut » de valeur d'une propriété de ce système si l'on modifie les conditions opératoires telles que la pression, la température ou la composition, aussi petite cette modification soit-elle. Un saut de valeur est caractéristique d'une transition de phase (voir la section Classification des transitions de phase). Par exemple, lorsque l'on comprime un gaz à température constante, sa masse volumique augmente continument. Lorsque la pression dépasse la pression de vapeur saturante du gaz, la masse volumique du système augmente fortement et brusquement : la phase n'est plus la même, le système est devenu liquide, de densité beaucoup plus importante que le gaz. De même, un matériau ferromagnétique ou ferrimagnétique dont on augmente la température perd brusquement son aimantation permanente à la température de Curie et devient paramagnétique[14].

Équilibre et stabilité[modifier | modifier le code]

Équilibre de phases[modifier | modifier le code]

Selon les conditions opératoires, un corps pur ou un mélange peut se présenter dans une phase ou une autre, voire sous plusieurs phases simultanément. La coexistence de plusieurs phases est appelée équilibre de phases. Les phases en équilibre peuvent être dans le même état ou dans des états différents. Lorsqu'une phase liquide est en équilibre avec une phase gazeuse, cette dernière est généralement appelée vapeur, l'équilibre est appelé équilibre liquide-vapeur plutôt que équilibre liquide-gaz. À pression atmosphérique normale (101 325 Pa), les phases solide (glace) et liquide de l'eau coexistent à 0 °C, ses phases gazeuse (vapeur d'eau) et liquide à 100 °C. Pour un corps pur les trois états coexistent de façon stable au point triple[15], un unique couple de pression et de température : pour l'eau ce point se situe à 611,2 Pa et 0,01 °C[15]. Plus généralement, le terme de point triple désigne tout point de coexistence de trois phases, quels que soient leurs états[15]. Le diagramme de phase de l'eau montre plusieurs points triples en plus du point solide-liquide-vapeur : plusieurs points avec le liquide et deux formes de glace, et plusieurs points avec trois formes de glace.

Dans les équilibres de phases d'un mélange, les diverses phases ont le plus souvent des compositions différentes. Par exemple, un mélange d'huile et d'eau présente simultanément une phase liquide d'huile saturée en eau et une phase liquide aqueuse saturée en huile ; de même, un mélange d'eau et d'éthanol présente le plus souvent un équilibre liquide-vapeur dans lequel les deux phases ont des compositions différentes. Il existe des cas particuliers d'équilibre de phases d'un mélange dans lesquels les phases ont la même composition : c'est notamment le cas des azéotropes pour les équilibres liquide-vapeur et celui des points de fusion congruents pour les équilibres liquide-solide[4].

Stabilité et métastabilité[modifier | modifier le code]

De façon générale, un système thermodynamique présentant une ou plusieurs phases est dans un état d'équilibre dit stable s'il revient à cet équilibre après avoir subit une perturbation (un apport d'énergie relativement faible)[16],[17]. À pression atmosphérique et 0 °C, si l'on agite brièvement de l'eau à son équilibre solide-liquide, cet équilibre n'est pas modifié (une agitation prolongée peut apporter suffisamment de chaleur au système pour provoquer la fonte de la glace).

Certains états observés se maintiennent dans le temps jusqu'à ce qu'une perturbation déclenche une transformation souvent violente : un tel état est dit métastable[18]. La transformation observée consiste en l'établissement de la ou des phases stables dans les conditions opératoires données. Ainsi, l'eau peut être maintenue liquide en dessous de 0 °C à pression atmosphérique : cet état est appelé état de surfusion, il suffit alors de l'introduction d'une poussière ou d'une fluctuation de température pour que l'eau se solidifie brutalement ; cet état s'observe de façon naturelle lors des pluies verglaçantes. L'état métastable de l'eau non vaporisée au-dessus de 100 °C est appelé surébullition ou retard à l'ébullition ; il est observé dans une tasse de café chauffé au microonde qui entre en ébullition brutale lorsque l'on y ajoute du sucre[19]. Dans les conditions de pression et température atmosphériques, le graphite est la forme solide stable du carbone, le diamant est métastable.

Diagramme de phases[modifier | modifier le code]

Types de diagramme[modifier | modifier le code]

Un diagramme de phases représente les domaines d'existence des phases d'un matériau donné (corps pur ou mélange) en fonction des conditions opératoires qui déterminent l'existence de ces phases : la pression, la température et la composition. Les courbes qui délimitent ces domaines représentent les transitions de phases.

Pour un corps pur, un diagramme de phases représente la pression en fonction de la température. Un corps pur ne présente qu'une seule phase gazeuse et une seule phase liquide. Par contre, il peut présenter plusieurs phases solides[20].

Pour un mélange, plusieurs types de diagrammes sont souvent utilisés :

  • un diagramme représentant la pression en fonction de la température à composition constante ;
  • un diagramme isobare, représentant, à pression donnée constante, l'évolution de la température en fonction de la composition ;
  • un diagramme isotherme, représentant, à température donnée constante, l'évolution de la pression en fonction de la composition ;
  • un diagramme représentant, pour deux phases en équilibre, la composition de l'une des phases en fonction de la composition de l'autre phase ; dans ce diagramme la pression ou la température est fixée.

Les pentes des courbes d'un diagramme représentant la pression en fonction de la température sont données théoriquement par la formule de Clapeyron ou par les formules d'Ehrenfest[21].

Construction d'un diagramme isobare ou isotherme[modifier | modifier le code]

Diagramme de phases isotherme. Principes.

L'exemple pris ici concerne un équilibre liquide-vapeur (gaz), mais peut être transposé à tout autre équilibre de phases. Le diagramme isotherme ci-contre a été construit pour deux corps (espèces chimiques), notés et , de pressions de vapeur saturante respectives et à la température du diagramme. Avec , le corps est plus léger que le corps  : il se liquéfie à une pression plus élevée pour une même température.

Un diagramme isotherme représente, à température donnée constante, la pression en fonction de la composition d'un mélange. Un diagramme isobare représente, à pression donnée constante, la température en fonction de la composition d'un mélange. Ces deux types de diagramme sont utilisés pour des mélanges binaires (constitués de deux espèces chimiques). Les fractions molaires de ces deux espèces répondent donc à la contrainte . Une courbe de pression ou de température peut ainsi n'être représentée qu'en fonction d'une seule de ces deux fractions : à température donnée , à pression donnée . Les courbes reportées sur ces diagrammes représentent les conditions opératoires dans lesquelles débutent les transitions de phase, elles délimitent les domaines d'existence des différentes phases du mélange. Un domaine du diagramme dans lequel n'existe qu'une seule phase est délimité par des courbes fonctions de la composition de cette phase. Par exemple, dans le diagramme ci-contre, le domaine d'existence de la phase liquide seule (aux hautes pressions) est délimité par la courbe de bulle (bleue) tracée en fonction de la composition du liquide ; cette courbe représente les conditions de transition du liquide vers la vapeur dans lesquelles apparait la première bulle de gaz. Le domaine d'existence de la phase gaz seule (aux basses pressions) est délimité par la courbe de rosée (orange) tracée en fonction de la composition du gaz ; cette courbe représente les conditions de transition de la vapeur vers le liquide dans lesquelles apparait la première goutte de liquide.

Entre deux domaines représentant des phases seules, il peut exister un domaine dans lequel les deux phases coexistent en équilibre. Par exemple, dans le diagramme ci-contre, il existe, entre les domaines du liquide seul et du gaz seul, un domaine dans lequel les deux phases coexistent. Dans ce type de domaine, les compositions des phases en équilibre sont données par les intersections des courbes limitrophes et de la droite horizontale isobare ou isotherme (selon le type de diagramme). Dans le diagramme ci-contre, au point dans le domaine de coexistence des phases liquide et gaz, la composition de la phase liquide est donnée par le point sur la courbe de bulle et la composition de la phase vapeur par le point sur la courbe de rosée, les trois points étant à la même pression [22]. Au point le corps a une fraction molaire en phase liquide et en phase gaz. Le point , lui, se situe à une fraction molaire comprise entre et .

On suppose que le mélange est constitué d'une quantité de matière totale , dont une quantité de l'espèce . On a par définition :

Lorsque le mélange est biphasique, la quantité de matière se répartit entre une quantité en phase liquide, dont une quantité de l'espèce , et une quantité en phase vapeur, dont une quantité de l'espèce . Les bilans de matière donnent :

Les fractions molaires sont définies par :

En considérant les définitions des fractions molaires et les bilans de matière, on montre la règle des moments ou règle du levier[22],[23],[24],[25] :

Règle des moments ou règle du levier :

Autrement dit, au point , le rapport des longueurs des segments de droite et permet de déterminer la proportion de gaz dans le mélange. Ce paramètre est appelé taux de vaporisation ou fraction de vapeur :

Taux de vaporisation ou fraction de vapeur :

On peut de même définir un taux de liquéfaction ou fraction de liquide : .

Thermodynamique des équilibres de phases[modifier | modifier le code]

Conditions d'équilibre[modifier | modifier le code]

Conditions générales[modifier | modifier le code]

Soit un système isolé (qui n'échange ni énergie ni matière avec l'extérieur) composé deux de phases, notées et . Ce système subit une transformation afin d'atteindre l'équilibre. On écrit pour chacune des deux phases la variation d'énergie interne [26] :

avec la grandeur relative à la phase . Soit, pour le système isolé global, les fonctions globales énergie interne globale , entropie globale , volume global et quantité globale de chacun des corps . On a les relations sur le système global isolé, en l'absence de réaction chimique[26] :

  • (premier principe de la thermodynamique) ;
  • (deuxième principe de la thermodynamique) ;
  • (absence de travail des forces de pression) ;
  • pour tout (conservation de la matière).

Les grandeurs globales du système global isolé (de l'ensemble constitué par les deux phases) sont constantes (hormis l'entropie), mais les grandeurs propres à chacun des deux phases, elles, peuvent varier au cours de la transformation, leurs variations étant opposées. Par exemple, le volume global du système isolé, , est constant, mais les volumes des phases et peuvent varier et .

On obtient les relations globales d'évolution du système isolé :

Évolution

L'équilibre est atteint lorsque l'entropie globale du système atteint un maximum. Les variations d'entropie des deux phases sont alors liées par : . On peut donc écrire pour le système global à l'équilibre[27],[26] :

À l'équilibre

Quand les deux phases sont à l'équilibre, cela ne signifie pas qu'il n'y a pas d'échanges entre elles. Les deux phases continuent à échanger de la matière et de l'énergie, mais globalement les échanges se font dans les deux sens et se compensent : l'état d'équilibre obtenu est qualifié de dynamique ou stationnaire. Les variations , et pour tout sont donc non nulles à l'équilibre. La relation précédente implique par conséquent l'homogénéité des potentiels mécanique (pression), thermique (température) et chimiques (potentiels chimiques) entre les deux phases à l'équilibre[26] :

  •  ;
  •  ;
  • pour tout .

Les conditions d'équilibre sont donc données par[26],[28],[29] :

Conditions d'équilibre de deux phases et
Équilibre mécanique homogénéité de la pression
Équilibre thermique homogénéité de la température
Équilibre diffusif homogénéité des potentiels chimiques pour tout corps  :

Si le système contient une troisième phase , celle-ci doit être à l'équilibre avec les phases et  : elle sera par conséquent à l'équilibre aux mêmes pression, température et potentiels chimiques. Ces conditions sont donc généralisables à plus de deux phases en équilibre (équilibres gaz-liquide-liquide ou gaz-liquide-solide par exemple, ou multiples phases liquides[6] ou solides).

Note sur l'homogénéité des potentiels chimiques
L'homogénéité des potentiels chimiques signifie que pour le corps 1 , pour le corps 2 , … , pour le corps , mais pas que ces potentiels sont égaux entre corps différents : .

Homogénéité des fugacités[modifier | modifier le code]

Dans n'importe quelle phase , la fugacité du corps est définie par la relation entre potentiels chimiques :

Fugacité

avec :

  • la fugacité du corps  ;
  • la pression ;
  • la constante universelle des gaz parfaits ;
  • la température ;
  • le potentiel chimique du corps dans la phase  ;
  • le potentiel chimique du corps à l'état de gaz parfait pur.

La fugacité lie les propriétés d'un corps , pur ou en mélange, dans une phase quelconque réelle, aux propriétés de ce même corps à l'état de gaz parfait pur aux mêmes pression et température que la phase réelle. On peut écrire pour deux phases et en équilibre, en introduisant les fugacités respectives et de tout corps  :

À l'équilibre, les deux phases et sont aux mêmes pression et température, en conséquence le potentiel est le même dans ces deux relations, et l'on peut écrire, en considérant que [29],[30],[31] :

Condition d'équilibre des phases :

En termes de condition d'équilibre des phases, l'égalité des fugacités est donc équivalente à l'égalité des potentiels chimiques : si l'une est vérifiée, alors l'autre est aussi vérifiée, et réciproquement. Néanmoins, les potentiels chimiques ne pouvant être déterminés qu'à une constante additive près, l'égalité des potentiels chimiques est difficilement utilisable, tandis que les fugacités peuvent être déterminées de façon absolue, ce qui les rend particulièrement utiles.

Règle des phases[modifier | modifier le code]

Diagramme de phase de l'eau.
Les courbes représentent les équilibres de deux phases : si la température est fixée, la pression est subie, et réciproquement. Dans les domaines délimités par les courbes une seule phase est stable : on peut y faire varier la pression indépendamment de la température. Le point critique et le point triple ne peuvent être modifiés.

Soit un mélange quelconque composé de espèces chimiques réparties en phases. Les conditions d'équilibre stable d'un système hétérogène définies plus haut impliquent que :

  • les pressions sont liées par les égalités :
  • les températures sont liées par les égalités :
  • pour chacun des constituants, les potentiels chimiques sont liés par les égalités :

Pour chaque phase, les diverses variables sont également liées par la relation de Gibbs-Duhem, soit équations supplémentaires :

On a donc un total de variables et équations. La variance indique le nombre de variables, c'est-à-dire le nombre de conditions opératoires (parmi la pression, la température et les compositions des phases), que l'opérateur peut fixer indépendamment l'une de l'autre en restant dans le domaine d'équilibre stable des phases, d'où la règle des phases[13],[32] :

Règle des phases :

Par exemple, pour un corps pur, soit  :

  • en présence d'une seule phase (par exemple un liquide seul), soit , on a  : l'opérateur peut imposer la pression et la température indépendamment l'une de l'autre ;
  • en présence de deux phases (par exemple un équilibre liquide-gaz), soit , on a  : l'opérateur peut imposer la pression mais la température d'équilibre est subie (et inversement) ;
  • en présence de trois phases (par exemple le point triple de l'équilibre solide-liquide-gaz), soit , on a  : l'opérateur ne peut imposer aucune condition de l'équilibre.

Un mélange de constituants peut au plus se présenter sous phases à l'équilibre stable. Il ne peut y avoir au plus qu'une seule phase gaz, mais il peut y avoir plusieurs phases liquides et solides à l'équilibre[6].

Théorème de Gibbs-Konovalov[modifier | modifier le code]

Dans un diagramme de phases isobare ou isotherme d'un mélange, les courbes de transition de phase peuvent présenter des extrémums (maximum ou minimum), respectivement de pression ou de température, en fonction de la composition. Le théorème de Gibbs-Konovalov établit que[33],[34] :

« Aux points d'extrémum de pression ou de température, les phases en équilibre ont la même composition. »

— Théorème de Gibbs-Konovalov

Dans le diagramme de phases d'un équilibre liquide-vapeur, par exemple, si la courbe de bulle atteint un extrémum, alors la courbe de rosée atteint un extrémum à la même composition. Pour la pression et la température considérées, les phases liquide et vapeur en équilibre ont la même composition, et le mélange se comporte comme un corps pur : il s'agit d'un azéotrope. Dans un équilibre liquide-solide, ce cas de figure est appelé point de fusion congruent.

Stabilité d'un équilibre[modifier | modifier le code]

Le deuxième principe de la thermodynamique induit qu'un système à l'équilibre n'est stable que si l'entropie est maximale. Ceci induit que, pour un système à pression et température données, l'enthalpie libre est minimale. Ce principe implique également que l'entropie est une fonction concave de ses variables, et l'enthalpie libre, à pression et température données, une fonction convexe de ses variables.

L'entropie dans un changement d'état[modifier | modifier le code]

On apporte, à pression et quantité de matière constantes, de la chaleur à un corps pur dans un récipient fermé de volume pouvant varier. L'énergie interne du corps pur, en présence du travail des seules forces de pression, évolue selon le premier principe de la thermodynamique :

En introduisant l'enthalpie , on a, à pression constante :

La transformation est réversible, on introduit l'entropie  :

La chaleur apportée au corps pur est donc liée à l'entropie et à l'enthalpie selon :

Puisque la température thermodynamique est positive, on obtient :

(a) :

La transformation ayant lieu à pression et quantité de matière constantes, on a par définition de la capacité thermique isobare  :

On peut donc écrire la dérivée seconde :

Les conditions de stabilité thermodynamique donnent[35] . On obtient :

(b) :

Les équations (a) et (b) montrent que, à pression et composition constantes, l'entropie est une fonction croissante concave de l'enthalpie .

Changement d'état d'un corps pur. La courbe bleue ABC et la courbe orange CDE sont concaves. Cependant entre B et D l'entropie ABCDE est convexe. Pour conserver la concavité de l'entropie, le corps pur change d'état et l'entropie passe par le segment gris BD[36].

Sur la figure ci-contre, la courbe ABC bleue représente l'évolution, à pression et quantité de matière constantes, de l'entropie d'un corps pur dans une phase , la courbe CDE orange celle du même corps pur dans une phase . Les deux courbes sont concaves : si l'on joint deux points bleus, ou deux points orange, par un segment de droite, celui-ci est en-dessous de la courbe considérée. Cependant, la courbe globale ABCDE n'est pas dérivable au point C. De plus, elle est localement convexe entre B et D : si l'on joint un point de BC à un point de CD par un segment de droite, celui-ci est au-dessus de la courbe. Entre les points B et D, le corps pur ne peut être en équilibre stable s'il suit la courbe BCD. Pour conserver ses propriétés de continuité, dérivabilité et concavité, l'entropie passe par le segment de droite BD gris. Au point B le segment gris est tangent à la courbe bleue, au point D il est tangent à la courbe orange. La courbe ABDE est globalement dérivable et concave, contrairement à la courbe ABCDE. Le segment BD est la seule trajectoire qui rend l'entropie globalement dérivable et concave de A à E, tout autre point que B ou D, toute autre courbe qu'un segment de droite entre ces deux points engendre une courbe d'entropie localement non dérivable ou convexe[36].

Aux basses enthalpies, en amont du point B, le corps pur est exclusivement en phase . En aval du point D, aux hautes enthalpies, le corps pur est exclusivement en phase . Entre B et D, pour une enthalpie donnée, le segment gris représente une entropie supérieure aux entropies des phases et seules représentées respectivement par les courbes bleue et orange : cette entropie maximale dans ces conditions de pression et température représente le point de stabilité du système, mais ne représente pas une phase seule. Entre B et D, le corps pur subit un changement d'état et les deux phases et , à enthalpie donnée, coexistent en un équilibre stable[36].

La relation induit que sur le segment BD la température est constante : à la pression donnée, les deux phases du corps pur ne peuvent coexister qu'à une seule température, conformément à la règle des phases. Ainsi, les grandeurs , , et sont établies aux mêmes pression , température et quantité de matière . La température de changement d'état est donnée par le rapport[36] :

Température de changement d'état :

L'écart rapporté à la quantité de matière totale mise en jeu est l'entropie de changement d'état du corps pur. L'écart rapporté à la quantité de matière totale mise en jeu est l'enthalpie de changement d'état du corps pur[36]. L'enthalpie de changement d'état est la chaleur qu'il faut apporter à une mole de corps pur pour passer entièrement d'un état à l'autre :

Entropie de changement d'état :
Enthalpie de changement d'état :

L'équation du segment BD gris s'écrit :

Les points B et D représentant la même quantité de corps pur, on peut écrire, en introduisant les grandeurs molaires respectives :

Pour le corps pur est au point B, entièrement en phase  ; pour il est au point D, entièrement en phase . Pour le corps pur est biphasique, entre B et D : une quantité de phase coexiste en un équilibre stable avec une quantité de phase . Le paramètre est le taux de changement d'état, ou fraction de phase , c'est-à-dire la quantité de phase rapportée à la quantité de matière totale mise en jeu lors de la transformation :

Taux de changement d'état ou fraction de phase :

Autrement dit, si l'on dispose, à la pression et la température , d'une part d'une quantité de corps pur en phase et que l'on en prélève une fraction , et d'autre part d'une quantité de corps pur en phase et que l'on en prélève une fraction , si l'on met en contact ces deux fractions, alors celles-ci sont d'emblée en équilibre stable, sans nécessité d'une transformation pour atteindre cet équilibre[37].

Les branches BC bleue et CD orange sont des branches de métastabilité des phases correspondantes. Si le corps pur évolue sur ces branches (y compris au-delà de C pour la phase et en deçà de C pour la phase ), la moindre perturbation peut provoquer un brusque changement d'état, amenant l'entropie sur la courbe ABDE stable, à enthalpie constante[36]. L'état métastable d'un liquide non solidifié en dessous de sa température de fusion est appelé surfusion, il s'observe de façon naturelle pour l'eau lors des pluies verglaçantes (voir également la vidéo présentée dans la section Stabilité et métastabilité). L'état métastable d'un liquide non vaporisé au-dessus de sa température d'ébullition est appelé surébullition ou retard à l'ébullition, il s'observe dans une tasse de café chauffé au microonde qui entre en ébullition brutale lorsque l'on y ajoute du sucre[19].

Le même raisonnement peut être tenu pour les changements d'état des mélanges ; il doit cependant être tenu compte de la variation des compositions des phases en cours de transition.

Équilibre de phases selon la composition[modifier | modifier le code]

On considère un mélange constitué de deux espèces chimiques notées et . Si l'on fait varier la pression, la température et la composition du mélange, l'énergie interne du système varie selon :

avec :

  • et les quantités totales respectives de et dans le mélange ;
  • et les potentiels chimiques respectifs des deux corps.

Par la suite, on considère une transformation à pression et température données, seule la variation de la composition est étudiée. À pression et température constantes, on introduit l'enthalpie libre et la relation précédente devient :

Le théorème d'Euler permet d'écrire, en introduisant l'enthalpie libre molaire et les fractions molaires et  :

À pression et température constantes, le deuxième principe de la thermodynamique induit que l'enthalpie libre ne peut que décroître lors d'une transformation spontanée ; à l'équilibre, l'enthalpie libre atteint un minimum. Lorsque l'on mélange deux corps purs, l'enthalpie libre du mélange résultant ne peut donc être, à l'équilibre, qu'inférieure à la somme des enthalpies libres des corps purs considérés séparément, soit :

avec et les potentiels chimiques des deux corps purs. Un mélange tel que est instable[38]. Une grandeur molaire n'est fonction que de la pression, de la température et des fractions molaires : . Pour un mélange binaire, les deux fractions étant liées par la relation , on peut écrire la fonction comme ne dépendant, arbitrairement, que de pour la composition : . Ceci permet de tracer des diagrammes à pression et température constantes comme celui de la figure ci-contre. À pression et température données, l'enthalpie libre est une fonction continue, dérivable et convexe selon la composition pour tout [38].

Enthalpie libre d'un mélange binaire à pression et température constantes. Stabilité et équilibre de phases en fonction de la composition. Une phase est stable si son enthalpie libre est minimale. Entre B et D, l'enthalpie libre est minimale pour un équilibre des deux phases.

On suppose que le mélange binaire peut se présenter, aux pression et température données, sous une phase ou une phase selon la composition du mélange. Soient et leurs enthalpies libres molaires respectives[38] :

La figure ci-contre donne un exemple de diagramme représentant simultanément deux courbes et représentatives de la plupart des fonctions de ce type. Ces deux courbes sont continues, dérivables et convexes pour toutes les compositions.

Pour une composition donnée (une valeur de ), la phase stable est la phase ayant une enthalpie libre minimale. Pour les faibles valeurs de , entre les points A et B, on a , c'est donc la phase qui est stable et . Pour les fortes valeurs de , entre les points D et E, on a , c'est donc la phase qui est stable et [38].

Entre les points B et D, si l'on suit le même raisonnement, la fonction devrait passer par le point C et ne serait plus dérivable ni convexe. La fonction passe par le segment gris BD, tangent aux deux courbes en ces points : ce segment est la seule fonction qui permet de rendre l'enthalpie libre continue, dérivable et convexe sur toutes les compositions[38]. Entre B et D les deux phases et sont en équilibre[38],[39]. Par exemple, pour la composition donnée sur le graphe, on a , mais la phase est métastable : le mélange n'est stable que sous la forme d'un équilibre des deux phases représenté par le point P sur le segment gris, auquel . À cet équilibre, la phase a la composition du point B et la phase la composition du point D. Avec la composition , la règle des moments donne la fraction de phase[38],[39] :

Fraction de phase  :

avec et les quantités respectives des phases et . Entre les points B et D on a par conséquent[38],[39] :

avec les enthalpies libres respectives aux points B et D :

La continuité et la dérivabilité de la fonction aux points B et D induisent qu'à l'équilibre de deux phases les potentiels chimiques d'une espèce chimique dans les deux phases sont égaux[39] :