List of elements by stability of isotopes

From Wikipedia the free encyclopedia

Isotope half-lives. The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger.

Of the first 82 chemical elements in the periodic table, 80 have isotopes considered to be stable.[1] Overall, there are 251 known stable isotopes in total.

Background

[edit]

Atomic nuclei consist of protons and neutrons, which attract each other through the nuclear force, while protons repel each other via the electric force due to their positive charge. These two forces compete, leading to some combinations of neutrons and protons being more stable than others. Neutrons stabilize the nucleus, because they attract protons, which helps offset the electrical repulsion between protons. As a result, as the number of protons increases, an increasing ratio of neutrons to protons is needed to form a stable nucleus; if too many or too few neutrons are present with regard to the optimum ratio, the nucleus becomes unstable and subject to certain types of nuclear decay. Unstable isotopes decay through various radioactive decay pathways, most commonly alpha decay or beta decay, but rarer types of decay including spontaneous fission and cluster decay are known; more detail can be found at radioactive decay.

Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable.[1] The 83rd element, bismuth, was traditionally regarded as having the heaviest stable isotope, bismuth-209, but in 2003 researchers in Orsay, France, measured the half-life of 209
Bi
to be 1.9×1019 years.[2][3] Technetium and promethium (atomic numbers 43 and 61, respectively[a]) and all the elements with an atomic number over 82 only have isotopes that are known to undergo radioactive decay. No undiscovered elements are expected to be stable; therefore, lead is considered the heaviest stable element. However, it is possible that some isotopes that are now considered stable will be revealed to decay with extremely long half-lives (as happened with 209
Bi
).

For each of the 80 stable elements, the number of stable isotopes is given. Only 90 isotopes are stable against any possible decay, and an additional 161 are energetically unstable (see List of nuclides) but have never been observed to decay. Thus, 251 isotopes (nuclides) are stable by definition (including an excited state, tantalum-180m, for which no decay has yet been observed).

In April 2019 it was announced that the half-life of xenon-124 had been measured to 1.8 × 1022 years.[4] This is the longest half-life directly measured for any unstable isotope; only the (indirectly measured) half-life of tellurium-128 is longer.

Of the chemical elements, only 1 element (tin) has 10 such stable isotopes, 5 have 7 stable isotopes, 7 have 6 stable isotopes, 11 have 5 stable isotopes, 9 have 4 stable isotopes, 5 have 3 stable isotopes, 16 have 2 stable isotopes, and 26 have 1 stable isotope.[1]

Additionally, 31 nuclides of the naturally occurring elements have unstable isotopes with a half-life long enough to have survived for the age of the Solar System (108 years or more), and an additional four such nuclides represent three elements (bismuth, thorium, uranium) having no stable isotope. These 35 radioactive naturally occurring nuclides comprise the radioactive primordial nuclides. The total number of primordial nuclides is then 251 (the stable nuclides) plus the 35 radioactive primordial nuclides, for a total of 286.

The longest known half-life of 2.2 × 1024 years of tellurium-128 was measured by the method of detecting its radiogenic daughter xenon-128; this has been used for other isotopes with noble-gas daughters and barium-130 has also been measured no other way.[5] Another notable example is the only naturally occurring isotope of bismuth, bismuth-209, which has been predicted to be unstable with a very long half-life, but has been observed to decay. Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called primordial isotopes. All the primordial isotopes of each element are given in order of their decreasing abundance on Earth.[b] For a list of primordial nuclides in order of half-life, see List of nuclides.

118 chemical elements are known to exist. The first 94 are found in nature, and the remainder of the discovered elements are artificially produced, with isotopes all known to be radioactive with relatively short half-lives (see below). The elements in this list are ordered according to the lifetime of their most stable isotope.[1] Of these, three elements (bismuth, thorium, and uranium) are primordial because they have half-lives long enough to still be found on the Earth,[c] while all the others are produced either by radioactive decay or are synthesized in laboratories and nuclear reactors. Only 13 of the 38 unstable elements have a known isotope with a half-life of at least 100 years. Every known isotope of the remaining 25 elements is highly radioactive; these are used in academic research and sometimes in industry and medicine.[d] Some of the heavier elements in the periodic table may be revealed to have yet-undiscovered isotopes with longer lifetimes than those listed here.[e]

About 338 nuclides are found naturally on Earth. These comprise not only the 286 primordials, but also include about 52 shorter-lived isotopes that either are daughters of primordial isotopes (such as radium from uranium) or are made by energetic natural processes, such as carbon-14 made from atmospheric nitrogen by bombardment from cosmic rays.

Elements by number of primordial isotopes

[edit]

An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.

Another effect is to prevent beta decay of many even–even nuclides into another even–even nuclide of the same mass number but lower energy, because decay proceeding one step at a time would have to pass through an odd–odd nuclide of higher energy. (Double beta decay directly from even–even to even–even, skipping over an odd-odd nuclide, is only occasionally possible, and is a process so strongly hindered that it has a half-life greater than a billion times the age of the universe.) This makes for a larger number of stable even–even nuclides, up to three for some mass numbers, and up to seven for some atomic (proton) numbers and at least four for all stable even-Z elements beyond argon.

Since nuclei with odd numbers of protons is relatively less stable, odd-numbered elements tend to have fewer stable isotopes. Of the 26 ]monoisotopic elements (those with exactly one stable isotope), all but one have an odd atomic number—the single exception being beryllium. In addition, no odd-numbered element has more than two stable isotopes, while every even-numbered element heavier than carbon with stable isotopes has at least three. Only a single odd-numbered element, potassium, has three primordial isotopes and none more than that.

Tables

[edit]

The following tables give the elements with primordial nuclides (half-life of most stable isotope > 108 years). A list of nuclides sorted by half-life is found instead at List of nuclides.

The tables of elements are sorted by decreasing number of nuclides per element. Stable and unstable nuclides are given, with symbols for the unstable ones in italics. By convention, nuclides are counted as "stable" if they have never been observed to decay by experiment or from observation of decay products (so that nuclides unstable in theory, such as tantalum-180m, are counted as stable).

The first table is for even-atomic numbered elements, which tend to have far more primordial nuclides, due to the stability conferred by proton pairing. A second separate table is given for odd-atomic numbered elements, which tend to have far fewer stable and long-lived nuclides.

Primordial isotopes (in order of decreasing abundance on Earth[b]) of even-Z elements
Z
Element
Stable
[1]
Decays
[1]
unstable in bold
odd neutron number in pink
50 tin 10 120
Sn
118
Sn
116
Sn
119
Sn
117
Sn
124
Sn
122
Sn
112
Sn
114
Sn
115
Sn
54 xenon 7 2 132
Xe
129
Xe
131
Xe
134
Xe
136
Xe
130
Xe
128
Xe
124
Xe
126
Xe
48 cadmium 6 2 114
Cd
112
Cd
111
Cd
110
Cd
113
Cd
116
Cd
106
Cd
108
Cd
52 tellurium 6 2 130
Te
128
Te
126
Te
125
Te
124
Te
122
Te
123
Te
120
Te
44 ruthenium 7 102
Ru
104
Ru
101
Ru
99
Ru
100
Ru
96
Ru
98
Ru
66 dysprosium 7 164
Dy
162
Dy
163
Dy
161
Dy
160
Dy
158
Dy
156
Dy
70 ytterbium 7 174
Yb
172
Yb
173
Yb
171
Yb
176
Yb
170
Yb
168
Yb
80 mercury 7 202
Hg
200
Hg
199
Hg
201
Hg
198
Hg
204
Hg
196
Hg
42 molybdenum 6 1 98
Mo
96
Mo
95
Mo
92
Mo
100
Mo
97
Mo
94
Mo
56 barium 6 1 138
Ba
137
Ba
136
Ba
135
Ba
134
Ba
132
Ba
130
Ba
64 gadolinium 6 1 158
Gd
160
Gd
156
Gd
157
Gd
155
Gd
154
Gd
152
Gd
60 neodymium 5 2 142
Nd
144
Nd
146
Nd
143
Nd
145
Nd
148
Nd
150
Nd
62 samarium 5 2 152
Sm
154
Sm
147
Sm
149
Sm
148
Sm
150
Sm
144
Sm
76 osmium 5 2 192
Os
190
Os
189
Os
188
Os
187
Os
186
Os
184
Os
46 palladium 6 106
Pd
108
Pd
105
Pd
110
Pd
104
Pd
102
Pd
68 erbium 6 166
Er
168
Er
167
Er
170
Er
164
Er
162
Er
20 calcium 5 1 40
Ca
44
Ca
42
Ca
48
Ca
43
Ca
46
Ca
34 selenium 5 1 80
Se
78
Se
76
Se
82
Se
77
Se
74
Se
36 krypton 5 1 84
Kr
86
Kr
82
Kr
83
Kr
80
Kr
78
Kr
72 hafnium 5 1 180
Hf
178
Hf
177
Hf
179
Hf
176
Hf
174
Hf
78 platinum 5 1 195
Pt
194
Pt
196
Pt
198
Pt
192
Pt
190
Pt
22 titanium 5 48
Ti
46
Ti
47
Ti
49
Ti
50
Ti
28 nickel 5 58
Ni
60
Ni
62
Ni
61
Ni
64
Ni
30 zinc 5 64
Zn
66
Zn
68
Zn
67
Zn
70
Zn
32 germanium 4 1 74
Ge
72
Ge
70
Ge
73
Ge
76
Ge
40 zirconium 4 1 90
Zr
94
Zr
92
Zr
91
Zr
96
Zr
74 tungsten 4 1 184
W
186
W
182
W
183
W
180
W
16 sulfur 4 32
S
34
S
33
S
36
S
24 chromium 4 52
Cr
53
Cr
50
Cr
54
Cr
26 iron 4 56
Fe
54
Fe
57
Fe
58
Fe
38 strontium 4 88
Sr
86
Sr
87
Sr
84
Sr
58 cerium 4 140
Ce
142
Ce
138
Ce
136
Ce
82 lead 4 208
Pb
206
Pb
207
Pb
204
Pb
8 oxygen 3 16
O
18
O
17
O
10 neon 3 20
Ne
22
Ne
21
Ne
12 magnesium 3 24
Mg
26
Mg
25
Mg
14 silicon 3 28
Si
29
Si
30
Si
18 argon 3 40
Ar
36
Ar
38
Ar
2 helium 2 4
He
3
He
6 carbon 2 12
C
13
C
92 uranium 0 2 238
U
[c]
235
U
4 beryllium 1 9
Be
90 thorium 0 1 232
Th
[c]
Primordial isotopes of odd-Z elements
Z
Element
Stab
Dec
unstable: bold
odd N in pink
19 potassium 2 1 39
K
41
K
40
K
1 hydrogen 2 1
H
2
H
3 lithium 2 7
Li
6
Li
5 boron 2 11
B
10
B
7 nitrogen 2 14
N
15
N
17 chlorine 2 35
Cl
37
Cl
29 copper 2 63
Cu
65
Cu
31 gallium 2 69
Ga
71
Ga
35 bromine 2 79
Br
81
Br
47 silver 2 107
Ag
109
Ag
51 antimony 2 121
Sb
123
Sb
73 tantalum 2 181
Ta
180m
Ta
77 iridium 2 193
Ir
191
Ir
81 thallium 2 205
Tl
203
Tl
23 vanadium 1 1 51
V
50
V
37 rubidium 1 1 85
Rb
87
Rb
49 indium 1 1 115
In
113
In
57 lanthanum 1 1 139
La
138
La
63 europium 1 1 153
Eu
151
Eu
71 lutetium 1 1 175
Lu
176
Lu
75 rhenium 1 1 187
Re
185
Re
9 fluorine 1 19
F
11 sodium 1 23
Na
13 aluminium 1 27
Al
15 phosphorus 1 31
P
21 scandium 1 45
Sc
25 manganese 1 55
Mn
27 cobalt 1 59
Co
33 arsenic 1 75
As
39 yttrium 1 89
Y
41 niobium 1 93
Nb
45 rhodium 1 103
Rh
53 iodine 1 127
I
55 caesium 1 133
Cs
59 praseodymium 1 141
Pr
65 terbium 1 159
Tb
67 holmium 1 165
Ho
69 thulium 1 169
Tm
79 gold 1 197
Au
83 bismuth 0 1 209
Bi

Elements with no primordial isotopes

[edit]
No primordial isotopes
Longest-lived isotope > 1 day
Z
Element
t1⁄2[f][1] Longest-
lived
isotope
94 plutonium 8.08×107 yr 244
Pu
96 curium 1.56×107 yr 247
Cm
43 technetium 4.21×106 yr 97
Tc
[a]
93 neptunium 2.14×106 yr 237
Np
91 protactinium 32,760 yr 231
Pa
95 americium 7,370 yr 243
Am
88 radium 1,600 yr 226
Ra
97 berkelium 1,380 yr 247
Bk
98 californium 900 yr 251
Cf
84 polonium 125 yr 209
Po
89 actinium 21.772 yr 227
Ac
61 promethium 17.7 yr 145
Pm
[a]
99 einsteinium 1.293 yr 252
Es
[e]
100 fermium 100.5 d 257
Fm
[e]
101 mendelevium 51.3 d 258
Md
[e]
86 radon 3.823 d 222
Rn
No primordial isotopes
Longest-lived isotope < 1 day
Z
Element
t1⁄2[f][1] Longest-
lived
isotope
105 dubnium 16 h 268
Db
[e]
103 lawrencium 11 h 266
Lr
[e]
85 astatine 8.1 h 210
At
102 nobelium 58 min 259
No
[e]
104 rutherfordium 48 min 267
Rf
[e]
87 francium 22 min 223
Fr
106 seaborgium 14 min 269
Sg
[e]
107 bohrium 2.4 min 270
Bh
[e]
111 roentgenium 1.7 min 282
Rg
[e]
112 copernicium 28 s 285
Cn
[e]
108 hassium 16 s 269
Hs
[e]
110 darmstadtium 12.7 s 281
Ds
[e]
113 nihonium 9.5 s 286
Nh
[e]
109 meitnerium 4.5 s 278
Mt
[e]
114 flerovium 1.9 s 289
Fl
[e]
115 moscovium 650 ms 290
Mc
[e]
116 livermorium 57 ms 293
Lv
[e]
117 tennessine 51 ms 294
Ts
[e]
118 oganesson 690 μs 294
Og
[e]
Periodic table with elements colored according to the half-life of their most stable isotope.

See also

[edit]

Footnotes

[edit]
  1. ^ a b c See Stability of technetium isotopes and Stability of promethium isotopes for a discussion as to why technetium and promethium have no stable isotopes.
  2. ^ a b There are unstable isotopes with extremely long half-lives that are also found on Earth, and some of them are even more abundant than all the stable isotopes of a given element (for example, beta-active 187Re is twice as abundant as stable 185Re). Also, a bigger natural abundance of an isotope just implies that its formation was favored by the stellar nucleosynthesis process that produced the matter now constituting the Earth (and, of course, the rest of the Solar System) (see also Formation and evolution of the Solar System). In the case of argon the cosmically rarer 40
    Ar
    dominates on Earth over 36
    Ar
    as argon is too volatile to have been retained in the early proto-atmosphere of Earth while 40
    Ar
    is a decay product of long-lived and non-volatile 40
    K
    . Most argon in Earth's atmosphere is a product of potassium-40 decay. Most argon in the universe is not. At the present time 0.012% (120 ppm) of potassium on Earth is 40
    K
    . Taking the age of Earth and the half life of 40
    K
    (~1.25 billion years), this ratio was approximately an order of magnitude higher when the planet first formed. About 10.72% of that since-decayed 40
    K
    produced 40
    Ar
    , the rest having decayed to 40
    Ca
    .
  3. ^ a b c Of these three primordial but unstable elements, two more non-primordial isotopes are found in nature in significant amounts: 234
    U
    and 230
    Th
    , both radiogenic as decay products of 238
    U
    .
  4. ^ See many different industrial and medical applications of radioactive elements in Radionuclide, Nuclear medicine, Common beta emitters, Commonly used gamma-emitting isotopes, Fluorine-18, Cobalt-60, Strontium-90, Technetium-99m, Iodine-123, Iodine-124, Promethium-147, Iridium-192, etc.
  5. ^ a b c d e f g h i j k l m n o p q r s t u For elements with a higher atomic number than californium (with Z>98), there might exist undiscovered isotopes that are more stable than the known ones.
  6. ^ a b Legend: yr=year, d=day, h=hour, min=minute, s=second.

References

[edit]
  1. ^ a b c d e f g h Sonzogni, Alejandro. "Interactive Chart of Nuclides". National Nuclear Data Center: Brookhaven National Laboratory. Retrieved 2019-08-30.
  2. ^ Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc & Jean-Pierre Moalic (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  3. ^ Dumé, Belle (2003-04-23). "Bismuth breaks half-life record for alpha decay". Institute of Physics Publishing.
  4. ^ Siegel, Ethan. "Dark Matter Search Discovers A Spectacular Bonus: The Longest-Lived Unstable Element Ever". Forbes. Retrieved 2019-04-25.
  5. ^ "Noble Gas Research". Archived from the original on 2011-09-28. Retrieved 2013-01-10. Novel Gas Research. Accessed April 26, 2009