殆完全數

古氏积木說明8是殆完全數,也是亏数

殆完全數almost perfect number)是一種特別的自然數,它所有的真因數(即除了自身以外的因數)的和,恰好等於它本身減一。若用除數函數(其真因數的和及其本身)來表示,若一自然數n除數函數σ(n)等於2n - 1,該自然數即為殆完全數。殆完全數是一種虧數。虧度(σ(n) − 2n)為-1。

例如4的除數函數為2+1=3,比4小1,因此4是殆完全數。

目前已知的殆完全數為2的非負次幂(OEIS數列A000079),因此唯一已知奇數的殆完全數為20 = 1,但尚未證明除了2的非負次幂以外,是否存在其他型式的殆完全數。可以證明若存在大於1的奇數殆完全數,至少會有六個質因數[1][2]

m是奇數殆完全數,則m(2m − 1)會是笛卡爾數[3],而且,若ab滿足,且4ma and 4m + b都是质数,則m(4ma)(4m + b)會是奇數的奇異數[4]

参见

[编辑]

參考資料

[编辑]
  • Richard K. Guy|Guy, R. K., Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers. §B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 16 and 45-53, 1994.
  • Singh, S., Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, p. 13, 1997.
  1. ^ Kishore, Masao. Odd integers N with five distinct prime factors for which 2−10−12 < σ(N)/N < 2+10−12 (PDF). Mathematics of Computation. 1978, 32: 303–309. ISSN 0025-5718. JSTOR 2006281. MR 0485658. Zbl 0376.10005. doi:10.2307/2006281. 
  2. ^ Kishore, Masao. On odd perfect, quasiperfect, and odd almost perfect numbers. Mathematics of Computation. 1981, 36 (154): 583–586. ISSN 0025-5718. JSTOR 2007662. Zbl 0472.10007. doi:10.2307/2007662可免费查阅. 
  3. ^ Banks, William D.; Güloğlu, Ahmet M.; Nevans, C. Wesley; Saidak, Filip. Descartes numbers. De Koninck, Jean-Marie; Granville, Andrew; Luca, Florian (编). Anatomy of integers. Based on the CRM workshop, Montreal, Canada, March 13–17, 2006. CRM Proceedings and Lecture Notes 46. Providence, RI: American Mathematical Society. 2008: 167–173. ISBN 978-0-8218-4406-9. Zbl 1186.11004. 
  4. ^ Melfi, Giuseppe. On the conditional infiniteness of primitive weird numbers. Journal of Number Theory. 2015, 147: 508–514. doi:10.1016/j.jnt.2014.07.024可免费查阅. 

外部連結

[编辑]