亨特 - 萨克斯顿方程 Maple 动画 亨特 - 萨克斯顿方程(Hunter–Saxton equation)是一个模拟向列型液晶中波动传播的非线性偏微分方程:

亨特 - 萨克斯顿方程有解析解[1]:
此外,Maple软件包 TWSolution 给出多个行波解:
- tanh 展开法
其中 f1、f2 是重解,因此,只有两个独立的行波解。
Hunter Saxton equation Maple TWSolution travelling wave solution1
Hunter Saxton equation travelling wave solution3 with Maple TWSolution package - sech arctan 展开法
File:Hunter Saxton extended plot1.gif
- 综合展开
![{\displaystyle p[16]:=-1.0714+.71429*(-.50821*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3)-(.88026*I)*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3))^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/38755b10d0e02a06199fabea8b76eda59c4a8312)
![{\displaystyle p[17]:=-1.0714+.71429*(-.50821*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3)+(.88026*I)*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}1/3))^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9dbae9ad733c62fe5a2214b629d46436d5e959f)
![{\displaystyle p[20]:=-1.0714+.71429*(-.64030*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3)-(1.1091*I)*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3))^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18c425140dca5ed3d9ae59581c4f3f776d19f38d)
![{\displaystyle p[21]:=-1.0714+.71429*(-.64030*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3)+(1.1091*I)*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}1/3))^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/942281a3500926ff94b8c431ab21d1d9a287728d)
![{\displaystyle p[29]:=-1.0714+.73794*((1.1*ln(cos(1.3+1.4*x+1.5*t)+sqrt(cos(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((cos(1.3+1.4*x+1.5*t)-1.)*(cos(1.3+1.4*x+1.5*t)+1.)))*sqrt(cos(1.3+1.4*x+1.5*t)-1.)*sqrt(cos(1.3+1.4*x+1.5*t)+1.))/(sqrt(cos(1.3+1.4*x+1.5*t)+1.)*sqrt(cos(1.3+1.4*x+1.5*t)-1.)))^{(}2/3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d36a34abcd20e586be32194f6fdde7b66c73f8e9)
![{\displaystyle p[31]:=-1.0714+.73794*((1.1*ln(sin(1.3+1.4*x+1.5*t)+sqrt(sin(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.))+1.2*sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.))*(1.+sqrt(1/((sin(1.3+1.4*x+1.5*t)-1.)*(sin(1.3+1.4*x+1.5*t)+1.)))*sqrt(sin(1.3+1.4*x+1.5*t)-1.)*sqrt(sin(1.3+1.4*x+1.5*t)+1.))/(sqrt(sin(1.3+1.4*x+1.5*t)+1.)*sqrt(sin(1.3+1.4*x+1.5*t)-1.)))^{(}2/3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14fa86772f2adcd508f2b828f68c20b16febd148)
![{\displaystyle p[32]:=-1.0714+1.1714*((-1.1*arctan(1/sqrt(csc(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(csc(1.3+1.4*x+1.5*t)-1.)*sqrt(csc(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(csc(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(csc(1.3+1.4*x+1.5*t)^{2}-1.))^{(}2/3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21238e7d34b917c8dc55bd13efd08265b90f9759)
![{\displaystyle p[33]:=-1.0714+1.1714*((-1.1*arctan(1/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sec(1.3+1.4*x+1.5*t)-1.)*sqrt(sec(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sec(1.3+1.4*x+1.5*t)^{2}-1.))^{(}2/3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3b07ef0acb668ef19e989126954e9f7be91ed34)
![{\displaystyle <p[34]:=-1.0714+1.1714*((-1.1*arctan(1/sqrt(sech(1.3+1.4*x+1.5*t)^{2}-1.))*sqrt(sech(1.3+1.4*x+1.5*t)-1.)*sqrt(sech(1.3+1.4*x+1.5*t)+1.)+1.2*sqrt(sech(1.3+1.4*x+1.5*t)^{2}-1.))/sqrt(sech(1.3+1.4*x+1.5*t)^{2}-1.))^{(}2/3)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6aefc17e2a843f8076dd14b49b827f526fa4723)









-
File:Hunter Saxton eq traveling wave plot 12.gif
-
File:Hunter Saxton eq traveling wave plot 13.gif
-
File:Hunter Saxton eq traveling wave plot 16.gif
-
File:Hunter Saxton eq traveling wave plot 17.gif
-
File:Hunter Saxton eq traveling wave plot 18.gif
-
File:Hunter Saxton eq traveling wave plot 19.gif
-
File:Hunter Saxton eq traveling wave plot 20.gif
-
File:Hunter Saxton eq traveling wave plot 21.gif
-
File:Hunter Saxton eq traveling wave plot 29.gif
-
File:Hunter Saxton eq traveling wave plot 31.gif
-
File:Hunter Saxton eq traveling wave plot 32.gif
-
File:Hunter Saxton eq traveling wave plot 33.gif
- 雅可比橢圓函數展开
-
Hunter Saxton traveling wave Jacobi function plot 35.gif
-
Jacobi function plot 35
-
Hunter Saxton traveling wave Jacobi function plot 36.gif
-
Hunter Saxton traveling wave Jacobi function plot 41.gif
-
Hunter Saxton traveling wave Jacobi function plot 43.gif
-
Hunter Saxton traveling wave Jacobi function plot 46.gif
- ^ Anders Samuelsen Nordli On the Hunter-Saxton equation,Norwegian University of Science and Technology,p38, June 2012
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759