三角函數精確值是利用三角函數的公式將特定的三角函數值加以化簡,並以數學根式或分數表示。
用根式或分數表達的精確三角函數有時很有用,主要用於簡化的解決某些方程式能進一步化簡。
根据尼云定理,有理数度数的角的正弦值,其中的有理数仅有0,
,±1。
相同角度的轉換表 角度單位 | 值 |
轉 | | | | | | | | |
角度 | | | | | | | | |
弧度 | | | | | | | | |
梯度 | | | | | | | | |
例如:0°、30°、45°
單位圓 例如:15°、22.5°


利用三倍角公式求
角
[编辑] 例如:10°、20°、7°......等等,非三的倍數的角的精確值。


把它改為


把
當成未知數,
當成常數項 解一元三次方程式即可求出
例如:
同樣地,若角度代未知數,則會得到三分之一角公式。
![{\displaystyle \cos {\frac {\theta }{n}}=\Re \left({\sqrt[{n}]{\cos \theta +i\sin \theta }}\right)={\frac {1}{2}}\left({\sqrt[{n}]{\cos \theta +i\sin \theta }}+{\sqrt[{n}]{\cos \theta -i\sin \theta }}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/71c3d32e31b02c92e787505c9eafa8fa4e8cd828)
![{\displaystyle \sin {\frac {\theta }{n}}=\Im \left({\sqrt[{n}]{\cos \theta +i\sin \theta }}\right)={\frac {1}{2i}}\left({\sqrt[{n}]{\cos \theta +i\sin \theta }}-{\sqrt[{n}]{\cos \theta -i\sin \theta }}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ea663e7086395418f2d54876843352a2d0bf147)
例如:
[1]
例如:21° = 9° + 12°


Chord(36°) = a/b = 1/φ, 根据托勒密定理 例如:18°
根據托勒密定理,在圓內接四邊形ABCD中,





由于三角函数的特性,大于45°角度的三角函数值,可以经由自0°~45°的角度的三角函数值的相关的计算取得。



[2]





![{\displaystyle -{\sqrt[{3}]{\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]-i\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]}}{\Bigg \}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bc8b004b90010622da546669426b9a57564c5903)
![{\displaystyle +{\sqrt[{3}]{\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]-i\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]}}{\Bigg \}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57b380930ccaf8f99838d8352bcfc963be7680bd)










![{\displaystyle \tan {\frac {\pi }{60}}=\tan 3^{\circ }={\tfrac {1}{4}}\left[(2-{\sqrt {3}})(3+{\sqrt {5}})-2\right]\left[2-{\sqrt {2(5-{\sqrt {5}})}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9afc8cae3b0181ce3ca0fa38cd9737a9096fc5de)


![{\displaystyle -{\sqrt[{3}]{\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]-i\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]}}{\Bigg \}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2d8e586d6453abd5ac515018fcbfd022fa81011)
![{\displaystyle +{\sqrt[{3}]{\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]-i\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]}}{\Bigg \}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd37da55c50e7c12ca7ba6ebd337630973cf60c)


![{\displaystyle \sin {\frac {\pi }{36}}=\sin 5^{\circ }={\frac {2-2{\sqrt {3}}\mathrm {i} }{2{\sqrt[{3}]{2({\sqrt {2}}-{\sqrt {6}})}}-2-{\sqrt {3}}}}-{\frac {(1+{\sqrt {3}}\mathrm {i} ){\sqrt[{3}]{2({\sqrt {2}}-{\sqrt {6}})}}-2-{\sqrt {3}}}{8}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/74aa3cf4e94e893298f0dd9edba498d11b4a2249)


![{\displaystyle \sin {\frac {\pi }{30}}=\sin 6^{\circ }={\tfrac {1}{8}}\left[{\sqrt {6(5-{\sqrt {5}})}}-{\sqrt {5}}-1\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e32eed64add3521d7d7c9bf695482e8c3add4c36)
![{\displaystyle \cos {\frac {\pi }{30}}=\cos 6^{\circ }={\tfrac {1}{8}}\left[{\sqrt {2(5-{\sqrt {5}})}}+{\sqrt {3}}({\sqrt {5}}+1)\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f90aff5eb92b8553f8dfd11cd76f3f30bd223560)
![{\displaystyle \tan {\frac {\pi }{30}}=\tan 6^{\circ }={\tfrac {1}{2}}\left[{\sqrt {2(5-{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca95e17f7bfec511a0d9029c1aa1a0c8e5cc5630)













![{\displaystyle {\tan 10^{\circ }=-{\frac {-1-{\sqrt {3}}{\rm {i}}}{6}}{\sqrt[{3}]{-12{\sqrt {3}}+36{\rm {i}}}}-{\frac {-1+{\sqrt {3}}{\rm {i}}}{6}}{\sqrt[{3}]{-12{\sqrt {3}}-36{\rm {i}}}}+{\frac {1}{\sqrt {3}}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bff3bab5cf2730334855083f4576b03c09c9dd07)




![{\displaystyle \sin {\frac {\pi }{15}}=\sin 12^{\circ }={\tfrac {1}{8}}\left[{\sqrt {2(5+{\sqrt {5}})}}-{\sqrt {3}}({\sqrt {5}}-1)\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/55fb1a72c84d5dec8bf231d619c534df13c261ef)
![{\displaystyle \cos {\frac {\pi }{15}}=\cos 12^{\circ }={\tfrac {1}{8}}\left[{\sqrt {6(5+{\sqrt {5}})}}+{\sqrt {5}}-1\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4923130317e1553f2cfd21ca42c4e29cd2f1f836)
![{\displaystyle \tan {\frac {\pi }{15}}=\tan 12^{\circ }={\tfrac {1}{2}}\left[{\sqrt {3}}(3-{\sqrt {5}})-{\sqrt {2(25-11{\sqrt {5}})}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a207e48f104ece1821014496f7b32e371956076d)







![{\displaystyle 2^{-{\frac {4}{3}}}\left({\sqrt[{3}]{i-{\sqrt {3}}}}-{\sqrt[{3}]{i+{\sqrt {3}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4fb7a6cadc9f67c9fc96b0b6bb7165af68824e9d)
![{\displaystyle 2^{-{\frac {4}{3}}}\left({\sqrt[{3}]{1+i{\sqrt {3}}}}+{\sqrt[{3}]{1-i{\sqrt {3}}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c1fd794ae0ddf0128bdcedcca67ead75c8174e89)


![{\displaystyle \tan {\frac {7\pi }{60}}=\tan 21^{\circ }={\tfrac {1}{4}}\left[2-\left(2+{\sqrt {3}}\right)\left(3-{\sqrt {5}}\right)\right]\left[2-{\sqrt {2\left(5+{\sqrt {5}}\right)}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/92f16397799bd47711ac25e404f6de198c9bb28c)
360/17°,
,
:正十七边形
[编辑] 



![{\displaystyle \sin {\frac {2\pi }{15}}=\sin 24^{\circ }={\tfrac {1}{8}}\left[{\sqrt {3}}({\sqrt {5}}+1)-{\sqrt {2}}{\sqrt {5-{\sqrt {5}}}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/748d70aaab6ed6e9d613d6ef799e612174f96970)

![{\displaystyle \tan {\frac {2\pi }{15}}=\tan 24^{\circ }={\tfrac {1}{2}}\left[{\sqrt {2(25+11{\sqrt {5}})}}-{\sqrt {3}}(3+{\sqrt {5}})\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/751f49b7e0a84e36750d6df47e69f7e5ca2f4ba2)
180/7°,
,
:正七边形
[编辑] ![{\displaystyle \cos {\frac {\pi }{7}}=\cos {\frac {180}{7}}^{\circ }=\cos 25{\frac {5}{7}}^{\circ }={\frac {1}{6}}+{\frac {1-{\sqrt {3}}i}{24}}{\sqrt[{3}]{28-84{\sqrt {3}}i}}+{\frac {1+{\sqrt {3}}i}{24}}{\sqrt[{3}]{28-84{\sqrt {3}}i}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e6f0da045735bbe37ae69faa6cb417ce734400d)
![{\displaystyle \sin {\frac {3\pi }{20}}=\sin 27^{\circ }={\tfrac {1}{8}}\left[2{\sqrt {5+{\sqrt {5}}}}-{\sqrt {2}}\;({\sqrt {5}}-1)\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/56f979b3d0d06f3124dd266ee7860dd955e654c1)
![{\displaystyle \cos {\frac {3\pi }{20}}=\cos 27^{\circ }={\tfrac {1}{8}}\left[2{\sqrt {5+{\sqrt {5}}}}+{\sqrt {2}}\;\left({\sqrt {5}}-1\right)\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/96ed3130d2995af89ffd7fed92ca75b79e11b580)








![{\displaystyle \sin {\frac {\pi }{5}}=\sin 36^{\circ }={\tfrac {1}{4}}\left[{\sqrt {2\left(5-{\sqrt {5}}\right)}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5a125bab3d72d8e6ca59b000aa0de58afe4e645)




![{\displaystyle \tan {\frac {13\pi }{60}}=\tan 39^{\circ }={\tfrac {1}{4}}\left[\left(2-{\sqrt {3}}\right)\left(3-{\sqrt {5}}\right)-2\right]\left[2-{\sqrt {2\left(5+{\sqrt {5}}\right)}}\right]\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f5d40feb83e05d4be7784892beb0641f8740e59)


































在下表中,
為虛數單位,
。