Special mathematical function
In mathematics, specifically the theory of elliptic functions, the nome is a special function that belongs to the non-elementary functions. This function is of great importance in the description of the elliptic functions, especially in the description of the modular identity of the Jacobi theta function, the Hermite elliptic transcendents and the Weber modular functions, that are used for solving equations of higher degrees.
The nome function is given by

where
and
are the quarter periods, and
and
are the fundamental pair of periods, and
is the half-period ratio. The nome can be taken to be a function of any one of these quantities; conversely, any one of these quantities can be taken as functions of the nome. Each of them uniquely determines the others when
. That is, when
, the mappings between these various symbols are both 1-to-1 and onto, and so can be inverted: the quarter periods, the half-periods and the half-period ratio can be explicitly written as functions of the nome. For general
with
,
is not a single-valued function of
. Explicit expressions for the quarter periods, in terms of the nome, are given in the linked article.
Notationally, the quarter periods
and
are usually used only in the context of the Jacobian elliptic functions, whereas the half-periods
and
are usually used only in the context of Weierstrass elliptic functions. Some authors, notably Apostol, use
and
to denote whole periods rather than half-periods.
The nome is frequently used as a value with which elliptic functions and modular forms can be described; on the other hand, it can also be thought of as function, because the quarter periods are functions of the elliptic modulus
:
.
The complementary nome
is given by

Sometimes the notation
is used for the square of the nome.
The mentioned functions
and
are called complete elliptic integrals of the first kind. They are defined as follows:


The nome solves the following equation:
![{\displaystyle |k|={\frac {\vartheta _{10}^{2}[0,q(k)]}{\vartheta _{00}^{2}[0,q(k)]}}\rightarrow q(k)=\mathrm {e} ^{-\pi K'(k)/K(k)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7f0c9b09474b042f2fb11d002088b4b687565c)
This analogon is valid for the Pythagorean complementary modulus:
![{\displaystyle k'={\sqrt {1-k^{2}}}={\frac {\vartheta _{01}^{2}[0,q(k)]}{\vartheta _{00}^{2}[0,q(k)]}}\rightarrow q(k)=\mathrm {e} ^{-\pi K'(k)/K(k)}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14692cd3a53b25cff04ec3a805e9d90aa00dcc8f)
where
are the complete Jacobi theta functions and
is the complete elliptic integral of the first kind with modulus
shown in the formula above. For the complete theta functions these definitions introduced by Sir Edmund Taylor Whittaker and George Neville Watson are valid:
![{\displaystyle \vartheta _{00}(v;w)=\prod _{n=1}^{\infty }(1-w^{2n})[1+2\cos(2v)w^{2n-1}+w^{4n-2}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c5acc090a4c8a2327974fa27125ca0f796ce535)
![{\displaystyle \vartheta _{01}(v;w)=\prod _{n=1}^{\infty }(1-w^{2n})[1-2\cos(2v)w^{2n-1}+w^{4n-2}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/05ceef12dd801305a4cf783265e8e157f4bdffde)
![{\displaystyle \vartheta _{10}(v;w)=2w^{1/4}\cos(v)\prod _{n=1}^{\infty }(1-w^{2n})[1+2\cos(2v)w^{2n}+w^{4n}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89a19ed41533c1761bf80ff54c7445c2518b5fe6)
These three definition formulas are written down in the fourth edition of the book A Course in Modern Analysis written by Whittaker and Watson on the pages 469 and 470. The nome is commonly used as the starting point for the construction of Lambert series, the q-series and more generally the q-analogs. That is, the half-period ratio
is commonly used as a coordinate on the complex upper half-plane, typically endowed with the Poincaré metric to obtain the Poincaré half-plane model. The nome then serves as a coordinate on a punctured disk of unit radius; it is punctured because
is not part of the disk (or rather,
corresponds to
). This endows the punctured disk with the Poincaré metric.
The upper half-plane (and the Poincaré disk, and the punctured disk) can thus be tiled with the fundamental domain, which is the region of values of the half-period ratio
(or of
, or of
and
etc.) that uniquely determine a tiling of the plane by parallelograms. The tiling is referred to as the modular symmetry given by the modular group. Some functions that are periodic on the upper half-plane are called to as modular functions; the nome, the half-periods, the quarter-periods or the half-period ratio all provide different parameterizations for these periodic functions.
The prototypical modular function is Klein's j-invariant. It can be written as a function of either the half-period ratio τ or as a function of the nome
. The series expansion in terms of the nome or the square of the nome (the q-expansion) is famously connected to the Fisher-Griess monster by means of monstrous moonshine.
Euler's function arises as the prototype for q-series in general.
The nome, as the
of q-series then arises in the theory of affine Lie algebras, essentially because (to put it poetically, but not factually)[citation needed] those algebras describe the symmetries and isometries of Riemann surfaces.
Every real value
of the interval
is assigned to a real number between inclusive zero and inclusive one in the nome function
. The elliptic nome function is axial symmetric to the ordinate axis. Thus:
. The functional curve of the nome passes through the origin of coordinates with the slope zero and curvature plus one eighth. For the real valued interval
the nome function
is strictly left-curved.
The Legendre's relation is defined that way:

And as described above, the elliptic nome function
has this original definition:
![{\displaystyle q(x)=\exp \left[-\pi \,{\frac {K({\sqrt {1-x^{2}}})}{K(x)}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df81ef17d6b7a4a906ffd3f2dd54bf5cf5355a85)
Furthermore, these are the derivatives of the two complete elliptic integrals:
![{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}K(x)={\frac {1}{x(1-x^{2})}}{\bigl [}E(x)-(1-x^{2})K(x){\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb22a548b5cba3b501be9ff692d4022478b11d6b)
![{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}E(x)=-{\frac {1}{x}}{\bigl [}K(x)-E(x){\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac39aabdf15fa3052bc9dbf27c777dc1264a0112)
Therefore, the derivative of the nome function has the following expression:

The second derivative can be expressed this way:

And that is the third derivative:

The complete elliptic integral of the second kind is defined as follows:

The following equation follows from these equations by eliminating the complete elliptic integral of the second kind:
![{\displaystyle 3{\biggl [}{\frac {\mathrm {d} ^{2}}{\mathrm {d} x^{2}}}q(x){\biggr ]}^{2}-2{\biggl [}{\frac {\mathrm {d} }{\mathrm {d} x}}q(x){\biggr ]}{\biggl [}{\frac {\mathrm {d} ^{3}}{\mathrm {d} x^{3}}}q(x){\biggr ]}={\frac {\pi ^{8}-4\pi ^{4}(1+x^{2})^{2}K(x)^{4}}{16x^{4}(1-x^{2})^{4}K(x)^{8}}}q(x)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d3abf79eb163d0b918b655dfbfb2e7939bf5038b)
Thus, the following third-order quartic differential equation is valid:
![{\displaystyle x^{2}(1-x^{2})^{2}[2q(x)^{2}q'(x)q'''(x)-3q(x)^{2}q''(x)^{2}+q'(x)^{4}]=(1+x^{2})^{2}q(x)^{2}q'(x)^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d20a96bbd628efdd6806277004869a4047b3497c)
MacLaurin series and integer sequences
[edit] Given is the derivative of the Elliptic Nome mentioned above:

The outer factor with the K-integral in the denominator shown in this equation is the derivative of the elliptic period ratio. The elliptic period ratio is the quotient of the K-integral of the Pythagorean complementary modulus divided by the K-integral of the modulus itself. And the integer number sequence in MacLaurin series of that elliptic period ratio leads to the integer sequence of the series of the elliptic nome directly.
The German mathematician Adolf Kneser researched on the integer sequence of the elliptic period ratio in his essay Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen and showed that the generating function of this sequence is an elliptic function. Also a further mathematician with the name Robert Fricke analyzed this integer sequence in his essay Die elliptischen Funktionen und ihre Anwendungen and described the accurate computing methods by using this mentioned sequence. The Kneser integer sequence Kn(n) can be constructed in this way:
|
|
Executed examples:
|
|
|
|
|
|
The Kneser sequence appears in the Taylor series of the period ratio (half period ratio):


The derivative of this equation after
leads to this equation that shows the generating function of the Kneser number sequence:


This result appears because of the Legendre's relation
in the numerator.
Schellbach Schwarz sequence
[edit] The mathematician Karl Heinrich Schellbach [de] discovered the integer number sequence that appears in the MacLaurin series of the fourth root of the quotient Elliptic Nome function divided by the square function. The construction of this sequence is detailed in his work Die Lehre von den Elliptischen Integralen und den Thetafunktionen.[1]: 60 The sequence was also constructed by the Silesian German mathematician Hermann Amandus Schwarz in Formeln und Lehrsätze zum Gebrauche der elliptischen Funktionen[2] (pages 54–56, chapter Berechnung der Grösse k). This Schellbach Schwarz number sequence Sc(n) was also analyzed by the mathematicians Karl Theodor Wilhelm Weierstrass and Louis Melville Milne-Thomson in the 20th century. The mathematician Adolf Kneser determined a construction for this sequence based on the following pattern:

The Schellbach Schwarz sequence Sc(n) appears in the On-Line Encyclopedia of Integer Sequences under the number A002103 and the Kneser sequence Kn(n) appears under the number A227503.
The following table[3][4] contains the Kneser numbers and the Schellbach Schwarz numbers:
Constructed sequences Kneser and Schellbach Schwarz Index n | Kn(n) (A227503) | Sc(n) (A002103) |
1 | 1 | 1 |
2 | 13 | 2 |
3 | 184 | 15 |
4 | 2701 | 150 |
5 | 40456 | 1707 |
6 | 613720 | 20910 |
7 | 9391936 | 268616 |
8 | 144644749 | 3567400 |
And this sequence creates the MacLaurin series of the elliptic nome[5][6][7] in exactly this way:
![{\displaystyle q(x)=\sum _{n=1}^{\infty }{\frac {{\text{Sc}}(n)}{2^{4n-3}}}{\biggl (}{\frac {1-{\sqrt[{4}]{1-x^{2}}}}{1+{\sqrt[{4}]{1-x^{2}}}}}{\biggr )}^{4n-3}=x^{2}{\biggl \{}{\frac {1}{2}}+{\biggl [}\sum _{n=1}^{\infty }{\frac {{\text{Sc}}(n+1)}{2^{4n+1}}}x^{2n}{\biggr ]}{\biggr \}}^{4}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/21eefe073b61084357f786b098eedee8400cd99a)

In the following, it will be shown as an example how the Schellbach Schwarz numbers are built up successively. For this, the examples with the numbers Sc(4) = 150, Sc(5) = 1707 and Sc(6) = 20910 are used:
![{\displaystyle \mathrm {Sc} (4)={\frac {2}{3}}\sum _{m=1}^{3}\mathrm {Sc} (m)\,\mathrm {Kn} (4-m)={\frac {2}{3}}{\bigl [}{\color {navy}\mathrm {Sc} (1)}\,{\color {cornflowerblue}\mathrm {Kn} (3)}+{\color {navy}\mathrm {Sc} (2)}\,{\color {cornflowerblue}\mathrm {Kn} (2)}+{\color {navy}\mathrm {Sc} (3)}\,{\color {cornflowerblue}\mathrm {Kn} (1)}{\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8c0e2f6c8f1e9bd5a3f5eb70920b4d90fff4bc48)

![{\displaystyle \mathrm {Sc} (5)={\frac {2}{4}}\sum _{m=1}^{4}\mathrm {Sc} (m)\,\mathrm {Kn} (5-m)={\frac {2}{4}}{\bigl [}{\color {navy}\mathrm {Sc} (1)}\,{\color {cornflowerblue}\mathrm {Kn} (4)}+{\color {navy}\mathrm {Sc} (2)}\,{\color {cornflowerblue}\mathrm {Kn} (3)}+{\color {navy}\mathrm {Sc} (3)}\,{\color {cornflowerblue}\mathrm {Kn} (2)}+{\color {navy}\mathrm {Sc} (4)}\,{\color {cornflowerblue}\mathrm {Kn} (1)}{\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb6c5b6b9b4e5d44f245fc6b05b5e3b5ddb4b25)

![{\displaystyle \mathrm {Sc} (6)={\frac {2}{5}}\sum _{m=1}^{5}\mathrm {Sc} (m)\,\mathrm {Kn} (6-m)={\frac {2}{5}}{\bigl [}{\color {navy}\mathrm {Sc} (1)}\,{\color {cornflowerblue}\mathrm {Kn} (5)}+{\color {navy}\mathrm {Sc} (2)}\,{\color {cornflowerblue}\mathrm {Kn} (4)}+{\color {navy}\mathrm {Sc} (3)}\,{\color {cornflowerblue}\mathrm {Kn} (3)}+{\color {navy}\mathrm {Sc} (4)}\,{\color {cornflowerblue}\mathrm {Kn} (2)}+{\color {navy}\mathrm {Sc} (5)}\,{\color {cornflowerblue}\mathrm {Kn} (1)}{\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d1331a9d6e16d802ebaf5eb68d2d9724296a7f64)

The MacLaurin series of the nome function
has even exponents and positive coefficients at all positions:

And the sum with the same absolute values of the coefficients but with alternating signs generates this function:
![{\displaystyle q{\bigl [}x(x^{2}+1)^{-1/2}{\bigr ]}=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}\operatorname {Kt} (n)}{16^{n}}}\,x^{2n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6821601b40939d3b575fe9ba4872771b5630ad9f)
The radius of convergence of this Maclaurin series is 1. Here
(OEIS A005797) is a sequence of exclusively natural numbers
for all natural numbers
and this integer number sequence is not elementary. This sequence of numbers
was researched by the Czech mathematician and fairy chess composer Václav Kotěšovec, born in 1956. Two ways of constructing this integer sequence shall be shown in the next section.
Construction method with Kneser numbers
[edit] The Kotěšovec numbers are generated in the same way as the Schellbach Schwarz numbers are constructed:
The only difference consists in the fact that this time the factor before the sum in this corresponding analogous formula is not
anymore, but
instead of that:

Following table contains the Schellbach Schwarz numbers and the Kneser numbers and the Apéry numbers:
Constructed sequences Kneser and Kotěšovec Index n | Kn(n) (A227503) | Kt(n) (A005797) |
1 | 1 | 1 |
2 | 13 | 8 |
3 | 184 | 84 |
4 | 2701 | 992 |
5 | 40456 | 12514 |
6 | 613720 | 164688 |
7 | 9391936 | 2232200 |
8 | 144644749 | 30920128 |
In the following, it will be shown as an example how the Schellbach Schwarz numbers are built up successively. For this, the examples with the numbers Kt(4) = 992, Kt(5) = 12514 and Kt(6) = 164688 are used:
![{\displaystyle \mathrm {Kt} (4)={\frac {8}{3}}\sum _{m=1}^{3}\mathrm {Kt} (m)\,\mathrm {Kn} (4-m)={\frac {8}{3}}{\bigl [}{\color {ForestGreen}\mathrm {Kt} (1)}\,{\color {cornflowerblue}\mathrm {Kn} (3)}+{\color {ForestGreen}\mathrm {Kt} (2)}\,{\color {cornflowerblue}\mathrm {Kn} (2)}+{\color {ForestGreen}\mathrm {Kt} (3)}\,{\color {cornflowerblue}\mathrm {Kn} (1)}{\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/484a19761f9332f4ade81d2d817110575206e50f)

![{\displaystyle \mathrm {Kt} (5)={\frac {8}{4}}\sum _{m=1}^{4}\mathrm {Kt} (m)\,\mathrm {Kn} (5-m)={\frac {8}{4}}{\bigl [}{\color {ForestGreen}\mathrm {Kt} (1)}\,{\color {cornflowerblue}\mathrm {Kn} (4)}+{\color {ForestGreen}\mathrm {Kt} (2)}\,{\color {cornflowerblue}\mathrm {Kn} (3)}+{\color {ForestGreen}\mathrm {Kt} (3)}\,{\color {cornflowerblue}\mathrm {Kn} (2)}+{\color {ForestGreen}\mathrm {Kt} (4)}\,{\color {cornflowerblue}\mathrm {Kn} (1)}{\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a5bf25b40cf9425196bd651e98d3b870125d01d9)

![{\displaystyle \mathrm {Kt} (6)={\frac {8}{5}}\sum _{m=1}^{5}\mathrm {Kt} (m)\,\mathrm {Kn} (6-m)={\frac {8}{5}}{\bigl [}{\color {ForestGreen}\mathrm {Kt} (1)}\,{\color {cornflowerblue}\mathrm {Kn} (5)}+{\color {ForestGreen}\mathrm {Kt} (2)}\,{\color {cornflowerblue}\mathrm {Kn} (4)}+{\color {ForestGreen}\mathrm {Kt} (3)}\,{\color {cornflowerblue}\mathrm {Kn} (3)}+{\color {ForestGreen}\mathrm {Kt} (4)}\,{\color {cornflowerblue}\mathrm {Kn} (2)}+{\color {ForestGreen}\mathrm {Kt} (5)}\,{\color {cornflowerblue}\mathrm {Kn} (1)}{\bigr ]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44aad501c2a5a6ecc4117e62355d7ae36347c6c6)

So the MacLaurin series of the direct Elliptic Nome can be generated:


Construction method with Apéry numbers
[edit] By adding a further integer number sequence
that denotes a specially modified Apéry sequence (OEIS A036917), the sequence of the Kotěšovec numbers
can be generated. The starting value of the sequence
is the value
and the following values of this sequence are generated with those two formulas that are valid for all numbers
:
![{\displaystyle \operatorname {Kt} (n+1)={\frac {1}{n}}\sum _{m=1}^{n}m\operatorname {Kt} (m)[16\operatorname {Ap} (n+1-m)-\operatorname {Ap} (n+2-m)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01667e1e78c3c54166bd9cbbcbe1e763f878e525)

This formula creates the Kotěšovec sequence too, but it only creates the sequence numbers of even indices:

The Apéry sequence
was researched especially by the mathematicians Sun Zhi-Hong and Reinhard Zumkeller. And that sequence generates the square of the complete elliptic integral of the first kind:

The first numerical values of the central binomial coefficients and the two numerical sequences described are listed in the following table:
Index n | Central binomial coefficient square | Sequence number Ap(n) | Sequence number Kt(n) |
1 | 1 | 1 | 1 |
2 | 4 | 8 | 8 |
3 | 36 | 88 | 84 |
4 | 400 | 1088 | 992 |
5 | 4900 | 14296 | 12514 |
6 | 63504 | 195008 | 164688 |
7 | 853776 | 2728384 | 2232200 |
8 | 11778624 | 38879744 | 30920128 |
9 | 165636900 | 561787864 | 435506703 |
10 | 2363904400 | 8206324928 | 6215660600 |
11 | 34134779536 | 120929313088 | 89668182220 |
12 | 497634306624 | 1794924383744 | 1305109502496 |
13 | 7312459672336 | 26802975999424 | 19138260194422 |
14 | 108172480360000 | 402298219288064 | 282441672732656 |
15 | 1609341595560000 | 6064992788397568 | 4191287776164504 |
16 | 24061445010950400 | 91786654611673088 | 62496081197436736 |
17 | 361297635242552100 | 1393772628452578264 | 935823746406530603 |
Václav Kotěšovec wrote down the number sequence
on the Online Encyclopedia of Integer Sequences up to the seven hundredth sequence number.
Here one example of the Kotěšovec sequence is computed:
|
The two following lists contain many function values of the nome function:
The first list shows pairs of values with mutually Pythagorean complementary modules:

![{\displaystyle q[{\tfrac {1}{4}}({\sqrt {6}}-{\sqrt {2}})]=\exp(-{\sqrt {3}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/93d8a66693d1cd78fa0422519e6a5f523cfa1f69)
![{\displaystyle q[{\tfrac {1}{4}}({\sqrt {6}}+{\sqrt {2}})]=\exp(-{\tfrac {1}{3}}{\sqrt {3}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65439422ce60fa3d5fc6fe179c42e1009ed2d75f)
![{\displaystyle q{\bigl \{}\sin {\bigl [}{\tfrac {1}{2}}\arcsin({\sqrt {5}}-2){\bigr ]}{\bigr \}}=\exp(-{\sqrt {5}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6a936616b7c30fd2ccbd919a5b02df778260ca2)
![{\displaystyle q{\bigl \{}\cos {\bigl [}{\tfrac {1}{2}}\arcsin({\sqrt {5}}-2){\bigr ]}{\bigr \}}=\exp(-{\tfrac {1}{5}}{\sqrt {5}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f0520786f759fa95434853d4178eb2bf51404281)
![{\displaystyle q[{\tfrac {1}{8}}(3{\sqrt {2}}-{\sqrt {14}})]=\exp(-{\sqrt {7}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/146dbf66e3c09547011325157fc5ab0e24bc107a)
![{\displaystyle q[{\tfrac {1}{8}}(3{\sqrt {2}}+{\sqrt {14}})]=\exp(-{\tfrac {1}{7}}{\sqrt {7}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1876f432bebf77e540f1f05ed861a3063a377e5d)
![{\displaystyle q[{\tfrac {1}{2}}({\sqrt {3}}-1)({\sqrt {2}}-{\sqrt[{4}]{3}})]=\exp(-3\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b0c3f87ebeff83d4064c0e049a5c47e68dbf68a4)
![{\displaystyle q[{\tfrac {1}{2}}({\sqrt {3}}-1)({\sqrt {2}}+{\sqrt[{4}]{3}})]=\exp(-{\tfrac {1}{3}}\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2676715f1a31a3992484d9be1e5b65b8b8a515b6)
![{\displaystyle q{\bigl [}{\tfrac {1}{16}}{\bigl (}{\sqrt {22}}+3{\sqrt {2}}{\bigr )}{\bigl (}{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}+2{\sqrt {11}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}-2{\sqrt {11}}}}+{\tfrac {1}{3}}{\sqrt {11}}-1{\bigr )}^{4}{\bigr ]}=\exp(-{\sqrt {11}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ad4c418abd807c8c0e7abed87075700c6c70b75)
![{\displaystyle q{\bigl [}{\tfrac {1}{16}}{\bigl (}{\sqrt {22}}-3{\sqrt {2}}{\bigr )}{\bigl (}{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}+2{\sqrt {11}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}-2{\sqrt {11}}}}+{\tfrac {1}{3}}{\sqrt {11}}+1{\bigr )}^{4}{\bigr ]}=\exp(-{\tfrac {1}{11}}{\sqrt {11}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d693754f74e8d7112c827dcd59404b39dc24e73)
![{\displaystyle q{\bigl \{}\sin {\bigl [}{\tfrac {1}{2}}\arcsin(5{\sqrt {13}}-18){\bigr ]}{\bigr \}}=\exp(-{\sqrt {13}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de0bdd26e6c712b1b0a515558bbd3618df1fa840)
![{\displaystyle q{\bigl \{}\cos {\bigl [}{\tfrac {1}{2}}\arcsin(5{\sqrt {13}}-18){\bigr ]}{\bigr \}}=\exp(-{\tfrac {1}{13}}{\sqrt {13}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b04bd58b6349f53752bac3a18f163ebf0d6fb397)
The second list shows pairs of values with mutually tangentially complementary modules:

![{\displaystyle q[(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}})]=\exp(-{\sqrt {6}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14f0e62e4d421f222094ba617cede952d65105de)
![{\displaystyle q[(2-{\sqrt {3}})({\sqrt {3}}+{\sqrt {2}})]=\exp(-{\tfrac {1}{3}}{\sqrt {6}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75700ebac9ec6effff134f031941de5df9346d04)
![{\displaystyle q[({\sqrt {10}}-3)({\sqrt {2}}-1)^{2}]=\exp(-{\sqrt {10}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed073cfdbaa4f3046ee6752908f2e2e7e7c50c15)
![{\displaystyle q[({\sqrt {10}}-3)({\sqrt {2}}+1)^{2}]=\exp(-{\tfrac {1}{5}}{\sqrt {10}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/45461a275c98757ce2a36099ac9967977bc6e24c)
![{\displaystyle q{\bigl [}{\tfrac {1}{16}}{\sqrt {2{\sqrt {2}}-{\sqrt {7}}}}\,(3{\sqrt {2}}-{\sqrt {14}})({\sqrt {2{\sqrt {2}}+1}}-1)^{4}{\bigr ]}=\exp(-{\sqrt {14}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d56c4f94d30805d4ed7f18aa6a50b7059db9337c)
![{\displaystyle q{\bigl [}{\tfrac {1}{16}}{\sqrt {2{\sqrt {2}}+{\sqrt {7}}}}\,(3{\sqrt {2}}+{\sqrt {14}})({\sqrt {2{\sqrt {2}}+1}}-1)^{4}{\bigr ]}=\exp(-{\tfrac {1}{7}}{\sqrt {14}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4c4a00c97c2711189661baa231551afbf525309b)
![{\displaystyle q[(2-{\sqrt {3}})^{2}({\sqrt {2}}-1)^{3}]=\exp(-3{\sqrt {2}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc3f53b6cd83ac389b9177b71d825e372a328180)
![{\displaystyle q[(2+{\sqrt {3}})^{2}({\sqrt {2}}-1)^{3}]=\exp(-{\tfrac {1}{3}}{\sqrt {2}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/724e0d9851623696a79e391e2cbc0d4643071b3d)
![{\displaystyle q[(10-3{\sqrt {11}})(3{\sqrt {11}}-7{\sqrt {2}})]=\exp(-{\sqrt {22}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ea3df580cac8509d498eb9315393ab6a8527f73)
![{\displaystyle q[(10-3{\sqrt {11}})(3{\sqrt {11}}+7{\sqrt {2}})]=\exp(-{\tfrac {1}{11}}{\sqrt {22}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec5febe724b4a827262e9b8e2f6d626fea510e84)
![{\displaystyle q{\bigl \{}({\sqrt {26}}+5)({\sqrt {2}}-1)^{2}\tan {\bigl [}{\tfrac {1}{4}}\pi -\arctan({\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}+{\sqrt {26}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}-{\sqrt {26}}}}+{\tfrac {1}{6}}{\sqrt {26}}-{\tfrac {1}{2}}{\sqrt {2}}){\bigr ]}^{4}{\bigr \}}=\exp(-{\sqrt {26}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a022833b5bd4116d2eea1280bf3eb96c58b114d4)
![{\displaystyle q{\bigl \{}({\sqrt {26}}+5)({\sqrt {2}}+1)^{2}\tan {\bigl [}\arctan({\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}+{\sqrt {26}}}}-{\tfrac {1}{3}}{\sqrt[{3}]{3{\sqrt {3}}-{\sqrt {26}}}}+{\tfrac {1}{6}}{\sqrt {26}}+{\tfrac {1}{2}}{\sqrt {2}})-{\tfrac {1}{4}}\pi {\bigr ]}^{4}{\bigr \}}=\exp(-{\tfrac {1}{13}}{\sqrt {26}}\,\pi )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/282659359e4e2b4141082d4da6f772e0f2981726)
Related quartets of values are shown below:
|
|
|
The elliptic nome was explored by Richard Dedekind and this function is the fundament in the theory of eta functions and their related functions. The elliptic nome is the initial point of the construction of the Lambert series. In the theta function by Carl Gustav Jacobi the nome as an abscissa is assigned to algebraic combinations of the Arithmetic geometric mean and also the complete elliptic integral of the first kind. Many infinite series[8] can be described easily in terms of the elliptic nome:
![{\displaystyle \sum _{n=1}^{\infty }q(x)^{\Box (n)}={\tfrac {1}{2}}\vartheta _{00}[q(x)]-{\tfrac {1}{2}}={\tfrac {1}{2}}{\sqrt {2\pi ^{-1}K(x)}}-{\tfrac {1}{2}}={\tfrac {1}{2}}\operatorname {agm} (1-x;1+x)^{-1/2}-{\tfrac {1}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d939a851b282fdd2a98cbdabfb1e68b3b11737f3)
![{\displaystyle \sum _{n=1}^{\infty }q(x)^{\Box (2n-1)}={\tfrac {1}{4}}\vartheta _{00}[q(x)]-{\tfrac {1}{4}}\vartheta _{01}[q(x)]={\tfrac {1}{4}}(1-{\sqrt[{4}]{1-x^{2}}}){\sqrt {2\pi ^{-1}K(x)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bc3d12818fda048205dd53b409ea0569be01c588)
![{\displaystyle \sum _{n=1}^{\infty }{\frac {2q(x)^{n}}{q(x)^{2n}+1}}={\tfrac {1}{2}}\vartheta _{00}[q(x)]^{2}-{\tfrac {1}{2}}=\pi ^{-1}K(x)-{\tfrac {1}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/18262c129c6083740984bc3f7a60b2d312b0f3f8)
![{\displaystyle \sum _{n=1}^{\infty }{\frac {2q(x)^{2n-1}}{q(x)^{4n-2}+1}}={\tfrac {1}{4}}\vartheta _{00}[q(x)]^{2}-{\tfrac {1}{4}}\vartheta _{01}[q(x)]^{2}={\tfrac {1}{2}}(1-{\sqrt {1-x^{2}}})\pi ^{-1}K(x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b721656514331f53201e21aa92fb1dd85a347af6)
![{\displaystyle \sum _{n=1}^{\infty }\Box (n)q(x)^{\Box (n)}=2^{-1/2}\pi ^{-5/2}K(x)^{3/2}[E(x)-(1-x^{2})K(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5720dad7e0a249666947491c1886a2261da03cd7)
![{\displaystyle \sum _{n=1}^{\infty }{\biggl [}{\frac {2q(x)^{n}}{1+q(x)^{2n}}}{\biggr ]}^{2}=2\pi ^{-2}E(x)K(x)-{\tfrac {1}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d21f2ef968a158473bf752d5b75003715e1142c)
![{\displaystyle \sum _{n=1}^{\infty }{\biggl [}{\frac {2q(x)^{n}}{1-q(x)^{2n}}}{\biggr ]}^{2}={\tfrac {2}{3}}\pi ^{-2}(2-x^{2})K(x)^{2}-2\pi ^{-2}K(x)E(x)+{\tfrac {1}{6}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b51ce7017fc886ab22c947d7604999cd321ea527)
The quadrangle represents the square number of index n, because in this way of notation the two in the exponent of the exponent would appear to small. So this formula is valid:
The letter
describes the complete elliptic integral of the second kind, which is the quarter periphery of an ellipse in relation to the bigger half axis of the ellipse with the numerical eccentricity
as abscissa value.
The two most important theta functions can be defined by following product series:
![{\displaystyle \prod _{n=1}^{\infty }[1-q(x)^{2n}][1+q(x)^{2n-1}]^{2}=\vartheta _{00}[q(x)]={\sqrt {2\pi ^{-1}K(x)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/88a5a4e1fa5c4a4e23da93098ddc6b8957308338)
![{\displaystyle \prod _{n=1}^{\infty }[1-q(x)^{2n}][1-q(x)^{2n-1}]^{2}=\vartheta _{01}[q(x)]={\sqrt[{4}]{1-x^{2}}}{\sqrt {2\pi ^{-1}K(x)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f22b351018037205a005412a2d6a4e38a22a4e40)
Furthermore, these two Pochhammer products have those two relations:
![{\displaystyle q(\varepsilon )[q(\varepsilon );q(\varepsilon )]_{\infty }^{24}=256\,\varepsilon ^{2}(1-\varepsilon ^{2})^{4}\pi ^{-{12}}K(\varepsilon )^{12}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4bf3274a8bb40bc0ee106949c6a9425ac55cf94e)
![{\displaystyle \varepsilon ^{2}[q(\varepsilon );q(\varepsilon )^{2}]_{\infty }^{24}=16\,(1-\varepsilon ^{2})^{2}q(\varepsilon )}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80907bfd1709d17899e302fdc0a1b09ee65be609)
The Pochhammer products have an important role in the pentagonal number theorem and its derivation.
Relation to other functions
[edit] Complete elliptic integrals
[edit] The nome function can be used for the definition of the complete elliptic integrals of first and second kind:
![{\displaystyle K(\varepsilon )={\tfrac {1}{2}}\pi \,\vartheta _{00}[q(\varepsilon )]^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/257bb7c1a36b0fea4f6f0b0964b8a54c83f05a59)
![{\displaystyle E(\varepsilon )=2\pi q(\varepsilon )\,\vartheta _{00}'[q(\varepsilon )]\vartheta _{00}[q(\varepsilon )]^{-3}+{\tfrac {1}{2}}\pi (1-\varepsilon ^{2})\,\vartheta _{00}[q(\varepsilon )]^{2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d64d2f75abee932d9472d4856a127149f34ec949)
In this case the dash in the exponent position stands for the derivative of the so-called theta zero value function:

Definitions of Jacobi functions
[edit] The elliptic functions Zeta Amplitudinis and Delta Amplitudinis can be defined with the elliptic nome function[9] easily:
![{\displaystyle \operatorname {zn} (x;k)=\sum _{n=1}^{\infty }{\frac {2\pi K(k)^{-1}\sin[\pi K(k)^{-1}x]q(k)^{2n-1}}{1-2\cos[\pi K(k)^{-1}x]q(k)^{2n-1}+q(k)^{4n-2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ffad178b350f43720e510a959d8832aff05c87d3)
![{\displaystyle \operatorname {dn} (x;k)={\sqrt[{4}]{1-k^{2}}}\prod _{n=1}^{\infty }{\frac {1+2\cos[\pi K(k)^{-1}x]q(k)^{2n-1}+q(k)^{4n-2}}{1-2\cos[\pi K(k)^{-1}x]q(k)^{2n-1}+q(k)^{4n-2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dba372d666f5ae62ffd9a60c357b3427331fb2a5)
Using the fourth root of the quotient of the nome divided by the square function as it was mentioned above, following product series definitions[10] can be set up for the Amplitude Sine, the Counter Amplitude Sine and the Amplitude Cosine in this way:
![{\displaystyle \operatorname {sn} (x;k)=2{\sqrt[{4}]{k^{-2}q(k)}}\,\sin[{\tfrac {1}{2}}\pi K(k)^{-1}x]\prod _{n=1}^{\infty }{\frac {1-2q(k)^{2n}\cos[\pi K(k)^{-1}x]+q(k)^{4n}}{1-2q(k)^{2n-1}\cos[\pi K(k)^{-1}x]+q(k)^{4n-2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f39e17fd5f6474f3618efb83f8b493b298e8417)
![{\displaystyle \operatorname {cd} (x;k)=2{\sqrt[{4}]{k^{-2}q(k)}}\,\cos[{\tfrac {1}{2}}\pi K(k)^{-1}x]\prod _{n=1}^{\infty }{\frac {1+2q(k)^{2n}\cos[\pi K(k)^{-1}x]+q(k)^{4n}}{1+2q(k)^{2n-1}\cos[\pi K(k)^{-1}x]+q(k)^{4n-2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db02ee0ed571a2916a10563e0f0f671a3d1babb3)
![{\displaystyle \operatorname {cn} (x;k)=2{\sqrt[{4}]{k^{-2}(1-k^{2})\,q(k)}}\,\cos[{\tfrac {1}{2}}\pi K(k)^{-1}x]\prod _{n=1}^{\infty }{\frac {1+2q(k)^{2n}\cos[\pi K(k)^{-1}x]+q(k)^{4n}}{1-2q(k)^{2n-1}\cos[\pi K(k)^{-1}x]+q(k)^{4n-2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6b7687b5712b44c7bff0af93b768aa53e8bb3ab5)
These five formulas are valid for all values k from −1 until +1.
Then following successive definition of the other Jacobi functions is possible:
![{\displaystyle \operatorname {sn} (x;k)={\frac {2\{\operatorname {zn} ({\tfrac {1}{2}}x;k)+\operatorname {zn} [K(k)-{\tfrac {1}{2}}x;k]\}}{k^{2}+\{\operatorname {zn} ({\tfrac {1}{2}}x;k)+\operatorname {zn} [K(k)-{\tfrac {1}{2}}x;k]\}^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78d9450546882da989e4f60415e759785a3e6752)
![{\displaystyle \operatorname {cd} (x;k)=\operatorname {sn} [K(k)-x;k]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/566618bf0887bc1218447e0c06db76ba881a66be)

![{\displaystyle \operatorname {dn} (x;k)={\frac {k^{2}-\{\operatorname {zn} ({\tfrac {1}{2}}x;k)+\operatorname {zn} [K(k)-{\tfrac {1}{2}}x;k]\}^{2}}{k^{2}+\{\operatorname {zn} ({\tfrac {1}{2}}x;k)+\operatorname {zn} [K(k)-{\tfrac {1}{2}}x;k]\}^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4bf8235ddc9238ffa884ca9cd0e9ffd96eca0b7f)
The product definition of the amplitude sine was written down in the essay π and the AGM by the Borwein brothers on page 60 and this formula is based on the theta function definition of Whittaker und Watson.
Identities of Jacobi Amplitude functions
[edit] In combination with the theta functions the nome gives the values of many Jacobi amplitude function values:
![{\displaystyle \operatorname {sc} [{\tfrac {2}{3}}K(k);k]={\frac {{\sqrt {3}}\,\vartheta _{01}[q(k)^{6}]}{{\sqrt {1-k^{2}}}\,\vartheta _{01}[q(k)^{2}]}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d48eb0ba8be378538574990cf6d98f0f6837ec5)
![{\displaystyle \operatorname {sn} [{\tfrac {1}{3}}K(k);k]={\frac {2\vartheta _{00}[q(k)]^{2}}{3\vartheta _{00}[q(k)^{3}]^{2}+\vartheta _{00}[q(k)]^{2}}}={\frac {3\vartheta _{01}[q(k)^{3}]^{2}-\vartheta _{01}[q(k)]^{2}}{3\vartheta _{01}[q(k)^{3}]^{2}+\vartheta _{01}[q(k)]^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4dee829b7e58661d3e24b6e6f54f2a15b564a1a)
![{\displaystyle \operatorname {cn} [{\tfrac {2}{3}}K(k);k]={\frac {3\vartheta _{00}[q(k)^{3}]^{2}-\vartheta _{00}[q(k)]^{2}}{3\vartheta _{00}[q(k)^{3}]^{2}+\vartheta _{00}[q(k)]^{2}}}={\frac {2\vartheta _{01}[q(k)]^{2}}{3\vartheta _{01}[q(k)^{3}]^{2}+\vartheta _{01}[q(k)]^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b77e36c4c941ee0ffa950edd6c979a691dd933e0)
![{\displaystyle \operatorname {sn} [{\tfrac {1}{5}}K(k);k]={\biggl \{}{\frac {{\sqrt {5}}\,\vartheta _{01}[q(k)^{5}]}{\vartheta _{01}[q(k)]}}-1{\biggr \}}{\biggl \{}{\frac {5\vartheta _{01}[q(k)^{10}]^{2}}{\vartheta _{01}[q(k)^{2}]^{2}}}-1{\biggr \}}^{-1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/00228e50190f4df1109e2009441ed337cb01aaca)