Herglotz's Variational Principle
In mathematics and physics, Herglotz's variational principle , named after German mathematician and physicist Gustav Herglotz , is an extension of the Hamilton's principle , where the Lagrangian L explicitly involves the action S {\displaystyle S} as an independent variable, and S {\displaystyle S} itself is represented as the solution of an ordinary differential equation (ODE) whose right hand side is the Lagrangian L {\displaystyle L} , instead of an integration of L {\displaystyle L} .[ 1] [ 2] Herglotz's variational principle is known as the variational principle for nonconservative Lagrange equations and Hamilton equations .
Suppose there is a Lagrangian L = L ( t , q , u , S ) {\displaystyle L=L(t,{\boldsymbol {q}},{\boldsymbol {u}},S)} of 2 n + 2 {\displaystyle 2n+2} variables, where q = ( q 1 , q 2 , … , q n ) {\displaystyle {\boldsymbol {q}}=(q_{1},q_{2},\dots ,q_{n})} and u = ( u 1 , u 2 , … , u n ) {\displaystyle {\boldsymbol {u}}=(u_{1},u_{2},\dots ,u_{n})} are n {\displaystyle n} dimensional vectors, and t , S {\displaystyle t,S} are scalar values. A time interval [ t 0 , t 1 ] {\displaystyle [t_{0},t_{1}]} is fixed. Given a time-parameterized curve q = q ( t ) {\displaystyle {\boldsymbol {q}}={\boldsymbol {q}}(t)} , consider the ODE { S ˙ ( t ) = L ( t , q ( t ) , q ˙ ( t ) , S ( t ) ) , t ∈ [ t 0 , t 1 ] S ( t 0 ) = S 0 {\displaystyle {\begin{cases}{\dot {S}}(t)=L(t,{\boldsymbol {q}}(t),{\boldsymbol {\dot {q}}}(t),S(t)),&t\in [t_{0},t_{1}]\\S(t_{0})=S_{0}\end{cases}}} When L ( t , q , u , S ) , q ( t ) , u ( t ) {\displaystyle L(t,{\boldsymbol {q}},{\boldsymbol {u}},S),{\boldsymbol {q}}(t),{\boldsymbol {u}}(t)} are all well-behaved functions, this equation allows a unique solution, and thus S 1 := S ( t 1 ) {\displaystyle S_{1}:=S(t_{1})} is a well defined number which is determined by the curve q ( t ) {\displaystyle {\boldsymbol {q}}(t)} . Herglotz's variation problem aims to minimize S 1 {\displaystyle S_{1}} over the family of curves q ( t ) {\displaystyle {\boldsymbol {q}}(t)} with fixed value q 0 {\displaystyle {\boldsymbol {q}}_{0}} at t = t 0 {\displaystyle t=t_{0}} and fixed value q 1 {\displaystyle {\boldsymbol {q}}_{1}} at t = t 1 {\displaystyle t=t_{1}} , i.e. the problem arg min q : q ( t 0 ) = q 0 , q ( t 1 ) = q 1 S 1 [ q ] {\displaystyle {\underset {{\boldsymbol {q}}:{\boldsymbol {q}}(t_{0})={\boldsymbol {q}}_{0},{\boldsymbol {q}}(t_{1})={\boldsymbol {q}}_{1}}{\arg \min }}S_{1}[{\boldsymbol {q}}]} Note that, when L {\displaystyle L} does not explicitly depend on S {\displaystyle S} , i.e. L = L ( t , q , u ) {\displaystyle L=L(t,{\boldsymbol {q}},{\boldsymbol {u}})} , the above ODE system gives exactly S ( t ) = ∫ t 0 t L ( t , q ( τ ) , q ( τ ) ) d τ {\textstyle S(t)=\int _{t_{0}}^{t}L(t,{\boldsymbol {q}}(\tau ),{\boldsymbol {q}}(\tau )){\rm {d}}\tau } , and thus S 1 = S ( t 1 ) = ∫ t 0 t 1 L ( t , q ( t ) , q ( t ) ) d t {\textstyle S_{1}=S(t_{1})=\int _{t_{0}}^{t_{1}}L(t,{\boldsymbol {q}}(t),{\boldsymbol {q}}(t)){\rm {d}}t} , which degenerates to the classical Hamiltonian action. The resulting Euler-Lagrange-Herglotz equation is d d t ( ∂ L ∂ q ˙ ) − ∂ L ∂ q = ∂ L ∂ S ∂ L ∂ q ˙ {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)-{\frac {\partial L}{\partial {\boldsymbol {q}}}}={\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}} which involves an extra term ∂ L ∂ S ∂ L ∂ q ˙ {\textstyle {\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}} that can describe the dissipation of the system.
In order to solve this minimization problem, we impose a variation δ q {\displaystyle \delta {\boldsymbol {q}}} on q {\displaystyle {\boldsymbol {q}}} , and suppose S ( t ) {\displaystyle S(t)} undergoes a variation δ S ( t ) {\displaystyle \delta S(t)} correspondingly, then δ S ˙ ( t ) = L ( t , q ( t ) + δ q ( t ) , q ˙ ( t ) + δ q ˙ ( t ) , S ( t ) + δ S ( t ) ) − L ( t , q ( t ) , q ˙ ( t ) , S ( t ) ) = ∂ L ∂ q δ q ( t ) + ∂ L ∂ q ˙ δ q ˙ ( t ) + ∂ L ∂ S δ S ( t ) {\displaystyle {\begin{aligned}\delta {\dot {S}}(t)&=L(t,{\boldsymbol {q}}(t)+\delta {\boldsymbol {q}}(t),{\dot {\boldsymbol {q}}}(t)+\delta {\dot {\boldsymbol {q}}}(t),S(t)+\delta S(t))-L(t,{\boldsymbol {q}}(t),{\dot {\boldsymbol {q}}}(t),S(t))\\&={\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)+{\frac {\partial L}{\partial S}}\delta S(t)\end{aligned}}} and since the initial condition is not changed, δ S 0 = 0 {\displaystyle \delta S_{0}=0} . The above equation a linear ODE for the function δ S ( t ) {\displaystyle \delta S(t)} , and it can be solved by introducing an integrating factor μ ( t ) = e ∫ t 0 t ∂ L ∂ S d t {\displaystyle \mu (t)=\mathrm {e} ^{\int _{t_{0}}^{t}{\frac {\partial L}{\partial S}}\mathrm {d} t}} , which is uniquely determined by the ODE μ ˙ ( t ) = − μ ( t ) ∂ L ∂ S , u ( t 0 ) = 1. {\displaystyle {\dot {\mu }}(t)=-\mu (t){\frac {\partial L}{\partial S}},\quad u(t_{0})=1.} By multiplying μ ( t ) {\displaystyle \mu (t)} on both sides of the equation of δ S ˙ {\displaystyle \delta {\dot {S}}} and moving the term μ ( t ) ∂ L ∂ S δ S ( t ) {\textstyle \mu (t){\frac {\partial L}{\partial S}}\delta S(t)} to the left hand side, we get μ ( t ) δ S ˙ ( t ) − μ ( t ) ∂ L ∂ S δ S ( t ) = μ ( t ) ( ∂ L ∂ q δ q ( t ) + ∂ L ∂ q ˙ δ q ˙ ( t ) ) . {\displaystyle \mu (t)\delta {\dot {S}}(t)-\mu (t){\frac {\partial L}{\partial S}}\delta S(t)=\mu (t)\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\right).} Note that, since μ ˙ ( t ) = − μ ( t ) ∂ L ∂ S {\textstyle {\dot {\mu }}(t)=-\mu (t){\frac {\partial L}{\partial S}}} , the left hand side equals to μ ( t ) δ S ˙ ( t ) + μ ˙ ( t ) δ S ( t ) = d ( μ ( t ) δ S ( t ) ) d t {\displaystyle \mu (t)\delta {\dot {S}}(t)+{\dot {\mu }}(t)\delta S(t)={\frac {\mathrm {d} (\mu (t)\delta S(t))}{\mathrm {d} t}}} and therefore we can do an integration of the equation above from t = t 0 {\displaystyle t=t_{0}} to t = t 1 {\displaystyle t=t_{1}} , yielding μ ( t 1 ) δ S 1 − μ ( t 0 ) δ S 0 = ∫ t 0 t 1 μ ( t ) ( ∂ L ∂ q δ q ( t ) + ∂ L ∂ q ˙ δ q ˙ ( t ) ) d t {\displaystyle \mu (t_{1})\delta S_{1}-\mu (t_{0})\delta S_{0}=\int _{t_{0}}^{t_{1}}\mu (t)\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\right)\mathrm {d} t} where the δ S 0 = 0 {\displaystyle \delta S_{0}=0} so the left hand side actually only contains one term μ ( t 1 ) δ S 1 {\displaystyle \mu (t_{1})\delta S_{1}} , and for the right hand side, we can perform the integration-by-part on the ∂ L ∂ q ˙ δ q ˙ ( t ) {\textstyle {\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)} term to remove the time derivative on δ q {\textstyle \delta {\boldsymbol {q}}} : ∫ t 0 t 1 μ ( t ) ( ∂ L ∂ q δ q ( t ) + ∂ L ∂ q ˙ δ q ˙ ( t ) ) d t = ∫ t 0 t 1 μ ( t ) ∂ L ∂ q δ q ( t ) d t + ∫ t 0 t 1 μ ( t ) ∂ L ∂ q ˙ δ q ˙ ( t ) d t = ∫ t 0 t 1 μ ( t ) ∂ L ∂ q δ q ( t ) d t + μ ( t 1 ) ∂ L ∂ q ˙ δ q ( t 1 ) ⏟ = 0 − μ ( t 0 ) ∂ L ∂ q ˙ δ q ( t 0 ) ⏟ = 0 − ∫ t 0 t 1 d d t ( μ ( t ) ∂ L ∂ q ˙ ) δ q ( t ) d t = ∫ t 0 t 1 μ ( t ) ∂ L ∂ q δ q ( t ) d t − ∫ t 0 t 1 d d t ( μ ( t ) ∂ L ∂ q ˙ ) δ q ( t ) d t = ∫ t 0 t 1 μ ( t ) ∂ L ∂ q δ q ( t ) d t − ∫ t 0 t 1 ( μ ˙ ( t ) ∂ L ∂ q ˙ + μ ( t ) d d t ∂ L ∂ q ˙ ) δ q ( t ) d t = ∫ t 0 t 1 μ ( t ) ∂ L ∂ q δ q ( t ) d t − ∫ t 0 t 1 ( − μ ( t ) ∂ L ∂ S ∂ L ∂ q ˙ + μ ( t ) d d t ∂ L ∂ q ˙ ) δ q ( t ) d t = ∫ t 0 t 1 μ ( t ) ( ∂ L ∂ q + ∂ L ∂ S ∂ L ∂ q ˙ − d d t ∂ L ∂ q ˙ ) _ δ q ( t ) d t , {\displaystyle {\begin{aligned}&\int _{t_{0}}^{t_{1}}\mu (t)\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)+{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\right)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t+\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\delta {\dot {\boldsymbol {q}}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t+\mu (t_{1}){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\underbrace {\delta {\boldsymbol {q}}(t_{1})} _{=0}-\mu (t_{0}){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\underbrace {\delta {\boldsymbol {q}}(t_{0})} _{=0}-\int _{t_{0}}^{t_{1}}{\frac {\mathrm {d} }{\mathrm {d} t}}\left(\mu (t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t-\int _{t_{0}}^{t_{1}}{\frac {\mathrm {d} }{\mathrm {d} t}}\left(\mu (t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t-\int _{t_{0}}^{t_{1}}\left({\dot {\mu }}(t){\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}+\mu (t){\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\frac {\partial L}{\partial {\boldsymbol {q}}}}\delta {\boldsymbol {q}}(t)\mathrm {d} t-\int _{t_{0}}^{t_{1}}\left(-\mu (t){\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}+\mu (t){\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)\delta {\boldsymbol {q}}(t)\mathrm {d} t\\=&\int _{t_{0}}^{t_{1}}\mu (t){\underline {\left({\frac {\partial L}{\partial {\boldsymbol {q}}}}+{\frac {\partial L}{\partial S}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}-{\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {\boldsymbol {q}}}}}\right)}}\delta {\boldsymbol {q}}(t)\mathrm {d} t,\end{aligned}}} and when S 1 {\displaystyle S_{1}} is minimized, δ S 1 = 0 {\displaystyle \delta S_{1}=0} for all δ q {\displaystyle \delta {\boldsymbol {q}}} , which indicates that the underlined term in the last line of the equation above has to be zero on the entire interval [ t 0 , t 1 ] {\displaystyle [t_{0},t_{1}]} , this gives rise to the Euler-Lagrange-Herglotz equation.
One simple one-dimensional ( n = 1 {\displaystyle n=1} ) example[ 3] is given by the Lagrangian L ( t , x , x ˙ , S ) = 1 2 m x ˙ 2 − V ( x ) − γ S {\displaystyle L(t,x,{\dot {x}},S)={\frac {1}{2}}m{\dot {x}}^{2}-V(x)-\gamma S} The corresponding Euler-Lagrange-Herglotz equation is given as d d t ( m x ˙ ) + V ′ ( x ) = − γ x ˙ , {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}(m{\dot {x}})+V'(x)=-\gamma {\dot {x}},} which simplifies into m x ¨ = − V ′ ( x ) − γ x ˙ . {\displaystyle m{\ddot {x}}=-V'(x)-\gamma {\dot {x}}.} This equation describes the damping motion of a particle in a potential field V {\displaystyle V} , where γ {\displaystyle \gamma } is the damping coefficient.
^ Gaset, Jordi; Lainz, Manuel; Mas, Arnau; Rivas, Xavier (2022-11-30), "The Herglotz variational principle for dissipative field theories" , Geometric Mechanics , 01 (2): 153– 178, arXiv :2211.17058 , doi :10.1142/S2972458924500060 , retrieved 2025-05-06 ^ Georgieva, Bogdana (2012). The Variational Principle of Hergloz and Related Results (Report). GIQ. doi :10.7546/giq-12-2011-214-225 . ^ "Tesis of Manuel Lainz" (PDF) . www.icmat.es . Archived from the original (PDF) on 2024-04-19. Retrieved 2025-05-06 .