Family of lifetime distributions with decreasing failure rate
Exponential-Logarithmic distribution (EL) Probability density function
Parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} β > 0 {\displaystyle \beta >0} Support x ∈ [ 0 , ∞ ) {\displaystyle x\in [0,\infty )} PDF 1 − ln p × β ( 1 − p ) e − β x 1 − ( 1 − p ) e − β x {\displaystyle {\frac {1}{-\ln p}}\times {\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}} CDF 1 − ln ( 1 − ( 1 − p ) e − β x ) ln p {\displaystyle 1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}}} Mean − polylog ( 2 , 1 − p ) β ln p {\displaystyle -{\frac {{\text{polylog}}(2,1-p)}{\beta \ln p}}} Median ln ( 1 + p ) β {\displaystyle {\frac {\ln(1+{\sqrt {p}})}{\beta }}} Mode 0 Variance − 2 polylog ( 3 , 1 − p ) β 2 ln p {\displaystyle -{\frac {2{\text{polylog}}(3,1-p)}{\beta ^{2}\ln p}}} − polylog 2 ( 2 , 1 − p ) β 2 ln 2 p {\displaystyle -{\frac {{\text{polylog}}^{2}(2,1-p)}{\beta ^{2}\ln ^{2}p}}} MGF − β ( 1 − p ) ln p ( β − t ) hypergeom 2 , 1 {\displaystyle -{\frac {\beta (1-p)}{\ln p(\beta -t)}}{\text{hypergeom}}_{2,1}} ( [ 1 , β − t β ] , [ 2 β − t β ] , 1 − p ) {\displaystyle ([1,{\frac {\beta -t}{\beta }}],[{\frac {2\beta -t}{\beta }}],1-p)}
In probability theory and statistics , the Exponential-Logarithmic (EL) distribution is a family of lifetime distributions with decreasing failure rate , defined on the interval [0, ∞). This distribution is parameterized by two parameters p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} .
The study of lengths of the lives of organisms, devices, materials, etc., is of major importance in the biological and engineering sciences. In general, the lifetime of a device is expected to exhibit decreasing failure rate (DFR) when its behavior over time is characterized by 'work-hardening' (in engineering terms) or 'immunity' (in biological terms).
The exponential-logarithmic model, together with its various properties, are studied by Tahmasbi and Rezaei (2008).[ 1] This model is obtained under the concept of population heterogeneity (through the process of compounding).
Properties of the distribution [ edit ] The probability density function (pdf) of the EL distribution is given by Tahmasbi and Rezaei (2008)[ 1]
f ( x ; p , β ) := ( 1 − ln p ) β ( 1 − p ) e − β x 1 − ( 1 − p ) e − β x {\displaystyle f(x;p,\beta ):=\left({\frac {1}{-\ln p}}\right){\frac {\beta (1-p)e^{-\beta x}}{1-(1-p)e^{-\beta x}}}} where p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} and β > 0 {\displaystyle \beta >0} . This function is strictly decreasing in x {\displaystyle x} and tends to zero as x → ∞ {\displaystyle x\rightarrow \infty } . The EL distribution has its modal value of the density at x=0, given by
β ( 1 − p ) − p ln p {\displaystyle {\frac {\beta (1-p)}{-p\ln p}}} The EL reduces to the exponential distribution with rate parameter β {\displaystyle \beta } , as p → 1 {\displaystyle p\rightarrow 1} .
The cumulative distribution function is given by
F ( x ; p , β ) = 1 − ln ( 1 − ( 1 − p ) e − β x ) ln p , {\displaystyle F(x;p,\beta )=1-{\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},} and hence, the median is given by
x median = ln ( 1 + p ) β {\displaystyle x_{\text{median}}={\frac {\ln(1+{\sqrt {p}})}{\beta }}} . The moment generating function of X {\displaystyle X} can be determined from the pdf by direct integration and is given by
M X ( t ) = E ( e t X ) = − β ( 1 − p ) ln p ( β − t ) F 2 , 1 ( [ 1 , β − t β ] , [ 2 β − t β ] , 1 − p ) , {\displaystyle M_{X}(t)=E(e^{tX})=-{\frac {\beta (1-p)}{\ln p(\beta -t)}}F_{2,1}\left(\left[1,{\frac {\beta -t}{\beta }}\right],\left[{\frac {2\beta -t}{\beta }}\right],1-p\right),} where F 2 , 1 {\displaystyle F_{2,1}} is a hypergeometric function . This function is also known as Barnes's extended hypergeometric function . The definition of F N , D ( n , d , z ) {\displaystyle F_{N,D}({n,d},z)} is
F N , D ( n , d , z ) := ∑ k = 0 ∞ z k ∏ i = 1 p Γ ( n i + k ) Γ − 1 ( n i ) Γ ( k + 1 ) ∏ i = 1 q Γ ( d i + k ) Γ − 1 ( d i ) {\displaystyle F_{N,D}(n,d,z):=\sum _{k=0}^{\infty }{\frac {z^{k}\prod _{i=1}^{p}\Gamma (n_{i}+k)\Gamma ^{-1}(n_{i})}{\Gamma (k+1)\prod _{i=1}^{q}\Gamma (d_{i}+k)\Gamma ^{-1}(d_{i})}}} where n = [ n 1 , n 2 , … , n N ] {\displaystyle n=[n_{1},n_{2},\dots ,n_{N}]} and d = [ d 1 , d 2 , … , d D ] {\displaystyle {d}=[d_{1},d_{2},\dots ,d_{D}]} .
The moments of X {\displaystyle X} can be derived from M X ( t ) {\displaystyle M_{X}(t)} . For r ∈ N {\displaystyle r\in \mathbb {N} } , the raw moments are given by
E ( X r ; p , β ) = − r ! Li r + 1 ( 1 − p ) β r ln p , {\displaystyle E(X^{r};p,\beta )=-r!{\frac {\operatorname {Li} _{r+1}(1-p)}{\beta ^{r}\ln p}},} where Li a ( z ) {\displaystyle \operatorname {Li} _{a}(z)} is the polylogarithm function which is defined as follows:[ 2]
Li a ( z ) = ∑ k = 1 ∞ z k k a . {\displaystyle \operatorname {Li} _{a}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{a}}}.} Hence the mean and variance of the EL distribution are given, respectively, by
E ( X ) = − Li 2 ( 1 − p ) β ln p , {\displaystyle E(X)=-{\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}},} Var ( X ) = − 2 Li 3 ( 1 − p ) β 2 ln p − ( Li 2 ( 1 − p ) β ln p ) 2 . {\displaystyle \operatorname {Var} (X)=-{\frac {2\operatorname {Li} _{3}(1-p)}{\beta ^{2}\ln p}}-\left({\frac {\operatorname {Li} _{2}(1-p)}{\beta \ln p}}\right)^{2}.} The survival, hazard and mean residual life functions[ edit ] Hazard function The survival function (also known as the reliability function) and hazard function (also known as the failure rate function) of the EL distribution are given, respectively, by
s ( x ) = ln ( 1 − ( 1 − p ) e − β x ) ln p , {\displaystyle s(x)={\frac {\ln(1-(1-p)e^{-\beta x})}{\ln p}},} h ( x ) = − β ( 1 − p ) e − β x ( 1 − ( 1 − p ) e − β x ) ln ( 1 − ( 1 − p ) e − β x ) . {\displaystyle h(x)={\frac {-\beta (1-p)e^{-\beta x}}{(1-(1-p)e^{-\beta x})\ln(1-(1-p)e^{-\beta x})}}.} The mean residual lifetime of the EL distribution is given by
m ( x 0 ; p , β ) = E ( X − x 0 | X ≥ x 0 ; β , p ) = − Li 2 ( 1 − ( 1 − p ) e − β x 0 ) β ln ( 1 − ( 1 − p ) e − β x 0 ) {\displaystyle m(x_{0};p,\beta )=E(X-x_{0}|X\geq x_{0};\beta ,p)=-{\frac {\operatorname {Li} _{2}(1-(1-p)e^{-\beta x_{0}})}{\beta \ln(1-(1-p)e^{-\beta x_{0}})}}} where Li 2 {\displaystyle \operatorname {Li} _{2}} is the dilogarithm function
Random number generation [ edit ] Let U be a random variate from the standard uniform distribution . Then the following transformation of U has the EL distribution with parameters p and β :
X = 1 β ln ( 1 − p 1 − p U ) . {\displaystyle X={\frac {1}{\beta }}\ln \left({\frac {1-p}{1-p^{U}}}\right).} Estimation of the parameters [ edit ] To estimate the parameters, the EM algorithm is used. This method is discussed by Tahmasbi and Rezaei (2008).[ 1] The EM iteration is given by
β ( h + 1 ) = n ( ∑ i = 1 n x i 1 − ( 1 − p ( h ) ) e − β ( h ) x i ) − 1 , {\displaystyle \beta ^{(h+1)}=n\left(\sum _{i=1}^{n}{\frac {x_{i}}{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}}}\right)^{-1},} p ( h + 1 ) = − n ( 1 − p ( h + 1 ) ) ln ( p ( h + 1 ) ) ∑ i = 1 n { 1 − ( 1 − p ( h ) ) e − β ( h ) x i } − 1 . {\displaystyle p^{(h+1)}={\frac {-n(1-p^{(h+1)})}{\ln(p^{(h+1)})\sum _{i=1}^{n}\{1-(1-p^{(h)})e^{-\beta ^{(h)}x_{i}}\}^{-1}}}.} The EL distribution has been generalized to form the Weibull-logarithmic distribution.[ 3]
If X is defined to be the random variable which is the minimum of N independent realisations from an exponential distribution with rate parameter β , and if N is a realisation from a logarithmic distribution (where the parameter p in the usual parameterisation is replaced by (1 − p ) ), then X has the exponential-logarithmic distribution in the parameterisation used above.
^ a b c Tahmasbi, R., Rezaei, S., (2008), "A two-parameter lifetime distribution with decreasing failure rate", Computational Statistics and Data Analysis , 52 (8), 3889-3901. doi :10.1016/j.csda.2007.12.002 ^ Lewin, L. (1981) Polylogarithms and Associated Functions , North Holland, Amsterdam. ^ Ciumara, Roxana; Preda, Vasile (2009) "The Weibull-logarithmic distribution in lifetime analysis and its properties" . In: L. Sakalauskas, C. Skiadas and E. K. Zavadskas (Eds.) Applied Stochastic Models and Data Analysis Archived 2011-05-18 at the Wayback Machine , The XIII International Conference, Selected papers. Vilnius, 2009 ISBN 978-9955-28-463-5
Discrete univariate
with finite support with infinite support
Continuous univariate
supported on a bounded interval supported on a semi-infinite interval supported on the whole real line with support whose type varies
Mixed univariate
Multivariate (joint) Directional Degenerate and singular Families