Поширення невизначеності Поши́рення неви́значеності (або поширення похибки) — у статистиці та чисельних методах, це вплив невизначеності змінних (або похибок, точніше випадкових помилок) на невизначеність функції, що ґрунтується на них. Коли змінні є значеннями експериментальних вимірювань, вони мають невизначеності через обмеження вимірювань (наприклад, точність приладу), які поширюються через комбінування змінних у функції. Невизначеність u може бути виражена кількома способами. Вона може бути визначена абсолютною похибкою Δx. Невизначеність також можна визначити відносною похибкою (Δx)/x, яка зазвичай записується у відсотках. Найчастіше невизначеність величини кількісно визначають за стандартним відхиленням σ, яке є додатним квадратним коренем із дисперсії. Тоді значення величини та її похибка виражаються як інтервал x ± u. Однак найзагальніший спосіб охарактеризувати невизначеність полягає в визначенні її розподілу ймовірностей. Якщо розподіл ймовірностей змінної відомий або його можна припустити, теоретично можна отримати будь-яку його статистику. Зокрема, можна вивести довірчий інтервал для опису області, в якій справжнє значення змінної може знаходитись. Якщо невизначеності корелюють, то коваріацію необхідно брати до уваги. Кореляція може виникати з двох різних джерел. По-перше, похибки вимірювання можуть бути корельовані. По-друге, коли базові значення корелюють в генеральній сукупності, невизначеності в середніх значеннях будуть корельовані. Лінійні функції[ред. | ред. код] Докладніше: Коваріаційна матриця Цей розділ статті ще не написано. Ви можете допомогти проєкту, написавши його. Нелінійні функції[ред. | ред. код] Докладніше: Ряд Тейлора, Часткова похідна, Матриця Якобі та Момент (математика) Цей розділ статті ще не написано. Ви можете допомогти проєкту, написавши його. Приклади[ред. | ред. код] Для дійсних функцій однієї змінної A , B {\displaystyle A,B} зі стандартними відхиленнями σ A , σ B , {\displaystyle \sigma _{A},\sigma _{B},} коваріацією σ A B = ρ A B σ A σ B , {\displaystyle \sigma _{AB}=\rho _{AB}\sigma _{A}\sigma _{B},} і кореляцією ρ A B . {\displaystyle \rho _{AB}.} Дійсні коефіцієнти a {\displaystyle a} and b {\displaystyle b} є відомими точно, тобто, σ a = σ b = 0. {\displaystyle \sigma _{a}=\sigma _{b}=0.} В стовбцях справа, A {\displaystyle A} та B {\displaystyle B} є математичними сподіваннями, а f {\displaystyle f} — функцією, обчисленою на цих значеннях. Function Дисперсія Стандартне відхилення f = a A {\displaystyle f=aA\,} σ f 2 = a 2 σ A 2 {\displaystyle \sigma _{f}^{2}=a^{2}\sigma _{A}^{2}} σ f = | a | σ A {\displaystyle \sigma _{f}=|a|\sigma _{A}} f = A + B {\displaystyle f=A+B} σ f 2 = σ A 2 + σ B 2 + 2 σ A B {\displaystyle \sigma _{f}^{2}=\sigma _{A}^{2}+\sigma _{B}^{2}+2\sigma _{AB}} σ f = σ A 2 + σ B 2 + 2 σ A B {\displaystyle \sigma _{f}={\sqrt {\sigma _{A}^{2}+\sigma _{B}^{2}+2\sigma _{AB}}}} f = A − B {\displaystyle f=A-B} σ f 2 = σ A 2 + σ B 2 − 2 σ A B {\displaystyle \sigma _{f}^{2}=\sigma _{A}^{2}+\sigma _{B}^{2}-2\sigma _{AB}} σ f = σ A 2 + σ B 2 − 2 σ A B {\displaystyle \sigma _{f}={\sqrt {\sigma _{A}^{2}+\sigma _{B}^{2}-2\sigma _{AB}}}} f = a A + b B {\displaystyle f=aA+bB} σ f 2 = a 2 σ A 2 + b 2 σ B 2 + 2 a b σ A B {\displaystyle \sigma _{f}^{2}=a^{2}\sigma _{A}^{2}+b^{2}\sigma _{B}^{2}+2ab\,\sigma _{AB}} σ f = a 2 σ A 2 + b 2 σ B 2 + 2 a b σ A B {\displaystyle \sigma _{f}={\sqrt {a^{2}\sigma _{A}^{2}+b^{2}\sigma _{B}^{2}+2ab\,\sigma _{AB}}}} f = a A − b B {\displaystyle f=aA-bB} σ f 2 = a 2 σ A 2 + b 2 σ B 2 − 2 a b σ A B {\displaystyle \sigma _{f}^{2}=a^{2}\sigma _{A}^{2}+b^{2}\sigma _{B}^{2}-2ab\,\sigma _{AB}} σ f = a 2 σ A 2 + b 2 σ B 2 − 2 a b σ A B {\displaystyle \sigma _{f}={\sqrt {a^{2}\sigma _{A}^{2}+b^{2}\sigma _{B}^{2}-2ab\,\sigma _{AB}}}} f = A B {\displaystyle f=AB} σ f 2 ≈ f 2 [ ( σ A A ) 2 + ( σ B B ) 2 + 2 σ A B A B ] {\displaystyle \sigma _{f}^{2}\approx f^{2}\left[\left({\frac {\sigma _{A}}{A}}\right)^{2}+\left({\frac {\sigma _{B}}{B}}\right)^{2}+2{\frac {\sigma _{AB}}{AB}}\right]} [1][2] σ f ≈ | f | ( σ A A ) 2 + ( σ B B ) 2 + 2 σ A B A B {\displaystyle \sigma _{f}\approx \left|f\right|{\sqrt {\left({\frac {\sigma _{A}}{A}}\right)^{2}+\left({\frac {\sigma _{B}}{B}}\right)^{2}+2{\frac {\sigma _{AB}}{AB}}}}} f = A B {\displaystyle f={\frac {A}{B}}} σ f 2 ≈ f 2 [ ( σ A A ) 2 + ( σ B B ) 2 − 2 σ A B A B ] {\displaystyle \sigma _{f}^{2}\approx f^{2}\left[\left({\frac {\sigma _{A}}{A}}\right)^{2}+\left({\frac {\sigma _{B}}{B}}\right)^{2}-2{\frac {\sigma _{AB}}{AB}}\right]} [3] σ f ≈ | f | ( σ A A ) 2 + ( σ B B ) 2 − 2 σ A B A B {\displaystyle \sigma _{f}\approx \left|f\right|{\sqrt {\left({\frac {\sigma _{A}}{A}}\right)^{2}+\left({\frac {\sigma _{B}}{B}}\right)^{2}-2{\frac {\sigma _{AB}}{AB}}}}} f = A A + B {\displaystyle f={\frac {A}{A+B}}} σ f 2 ≈ f 2 ( A + B ) 2 ( B 2 A 2 σ A 2 + σ B 2 − 2 B A σ A B ) {\displaystyle \sigma _{f}^{2}\approx {\frac {f^{2}}{\left(A+B\right)^{2}}}\left({\frac {B^{2}}{A^{2}}}\sigma _{A}^{2}+\sigma _{B}^{2}-2{\frac {B}{A}}\sigma _{AB}\right)} σ f ≈ | f A + B | B 2 A 2 σ A 2 + σ B 2 − 2 B A σ A B {\displaystyle \sigma _{f}\approx \left|{\frac {f}{A+B}}\right|{\sqrt {{\frac {B^{2}}{A^{2}}}\sigma _{A}^{2}+\sigma _{B}^{2}-2{\frac {B}{A}}\sigma _{AB}}}} f = a A b {\displaystyle f=aA^{b}} σ f 2 ≈ ( a b A b − 1 σ A ) 2 = ( f b σ A A ) 2 {\displaystyle \sigma _{f}^{2}\approx \left({a}{b}{A}^{b-1}{\sigma _{A}}\right)^{2}=\left({\frac {{f}{b}{\sigma _{A}}}{A}}\right)^{2}} σ f ≈ | a b A b − 1 σ A | = | f b σ A A | {\displaystyle \sigma _{f}\approx \left|{a}{b}{A}^{b-1}{\sigma _{A}}\right|=\left|{\frac {{f}{b}{\sigma _{A}}}{A}}\right|} f = a ln ( b A ) {\displaystyle f=a\ln(bA)} σ f 2 ≈ ( a σ A A ) 2 {\displaystyle \sigma _{f}^{2}\approx \left(a{\frac {\sigma _{A}}{A}}\right)^{2}} [4] σ f ≈ | a σ A A | {\displaystyle \sigma _{f}\approx \left|a{\frac {\sigma _{A}}{A}}\right|} f = a log 10 ( b A ) {\displaystyle f=a\log _{10}(bA)} σ f 2 ≈ ( a σ A A ln ( 10 ) ) 2 {\displaystyle \sigma _{f}^{2}\approx \left(a{\frac {\sigma _{A}}{A\ln(10)}}\right)^{2}} [4] σ f ≈ | a σ A A ln ( 10 ) | {\displaystyle \sigma _{f}\approx \left|a{\frac {\sigma _{A}}{A\ln(10)}}\right|} f = a e b A {\displaystyle f=ae^{bA}} σ f 2 ≈ f 2 ( b σ A ) 2 {\displaystyle \sigma _{f}^{2}\approx f^{2}\left(b\sigma _{A}\right)^{2}} [5] σ f ≈ | f | | ( b σ A ) | {\displaystyle \sigma _{f}\approx \left|f\right|\left|\left(b\sigma _{A}\right)\right|} f = a b A {\displaystyle f=a^{bA}} σ f 2 ≈ f 2 ( b ln ( a ) σ A ) 2 {\displaystyle \sigma _{f}^{2}\approx f^{2}(b\ln(a)\sigma _{A})^{2}} σ f ≈ | f | | b ln ( a ) σ A | {\displaystyle \sigma _{f}\approx \left|f\right|\left|b\ln(a)\sigma _{A}\right|} f = a sin ( b A ) {\displaystyle f=a\sin(bA)} σ f 2 ≈ [ a b cos ( b A ) σ A ] 2 {\displaystyle \sigma _{f}^{2}\approx \left[ab\cos(bA)\sigma _{A}\right]^{2}} σ f ≈ | a b cos ( b A ) σ A | {\displaystyle \sigma _{f}\approx \left|ab\cos(bA)\sigma _{A}\right|} f = a cos ( b A ) {\displaystyle f=a\cos \left(bA\right)\,} σ f 2 ≈ [ a b sin ( b A ) σ A ] 2 {\displaystyle \sigma _{f}^{2}\approx \left[ab\sin(bA)\sigma _{A}\right]^{2}} σ f ≈ | a b sin ( b A ) σ A | {\displaystyle \sigma _{f}\approx \left|ab\sin(bA)\sigma _{A}\right|} f = a tan ( b A ) {\displaystyle f=a\tan \left(bA\right)\,} σ f 2 ≈ [ a b sec 2 ( b A ) σ A ] 2 {\displaystyle \sigma _{f}^{2}\approx \left[ab\sec ^{2}(bA)\sigma _{A}\right]^{2}} σ f ≈ | a b sec 2 ( b A ) σ A | {\displaystyle \sigma _{f}\approx \left|ab\sec ^{2}(bA)\sigma _{A}\right|} f = A B {\displaystyle f=A^{B}} σ f 2 ≈ f 2 [ ( B A σ A ) 2 + ( ln ( A ) σ B ) 2 + 2 B ln ( A ) A σ A B ] {\displaystyle \sigma _{f}^{2}\approx f^{2}\left[\left({\frac {B}{A}}\sigma _{A}\right)^{2}+\left(\ln(A)\sigma _{B}\right)^{2}+2{\frac {B\ln(A)}{A}}\sigma _{AB}\right]} σ f ≈ | f | ( B A σ A ) 2 + ( ln ( A ) σ B ) 2 + 2 B ln ( A ) A σ A B {\displaystyle \sigma _{f}\approx \left|f\right|{\sqrt {\left({\frac {B}{A}}\sigma _{A}\right)^{2}+\left(\ln(A)\sigma _{B}\right)^{2}+2{\frac {B\ln(A)}{A}}\sigma _{AB}}}} f = a A 2 ± b B 2 {\displaystyle f={\sqrt {aA^{2}\pm bB^{2}}}} σ f 2 ≈ ( A f ) 2 a 2 σ A 2 + ( B f ) 2 b 2 σ B 2 ± 2 a b A B f 2 σ A B {\displaystyle \sigma _{f}^{2}\approx \left({\frac {A}{f}}\right)^{2}a^{2}\sigma _{A}^{2}+\left({\frac {B}{f}}\right)^{2}b^{2}\sigma _{B}^{2}\pm 2ab{\frac {AB}{f^{2}}}\,\sigma _{AB}} σ f ≈ ( A f ) 2 a 2 σ A 2 + ( B f ) 2 b 2 σ B 2 ± 2 a b A B f 2 σ A B {\displaystyle \sigma _{f}\approx {\sqrt {\left({\frac {A}{f}}\right)^{2}a^{2}\sigma _{A}^{2}+\left({\frac {B}{f}}\right)^{2}b^{2}\sigma _{B}^{2}\pm 2ab{\frac {AB}{f^{2}}}\,\sigma _{AB}}}} Примітки[ред. | ред. код] ↑ A Summary of Error Propagation (PDF). с. 2. Архів оригіналу (PDF) за 13 грудня 2016. Процитовано 4 квітня 2016. ↑ Propagation of Uncertainty through Mathematical Operations (PDF). с. 5. Процитовано 4 квітня 2016. ↑ Strategies for Variance Estimation (PDF). с. 37. Процитовано 18 січня 2013. ↑ а б Harris, Daniel C. (2003), Quantitative chemical analysis (вид. 6th), Macmillan, с. 56, ISBN 978-0-7167-4464-1 ↑ Error Propagation tutorial (PDF). Foothill College. 9 жовтня 2009. Процитовано 1 березня 2012.