Ортонормований базис
В скінченновимірному унітарному векторному просторі розмірності n, кожна ортонормована система із n векторів утворює ортонормований базис.
В кожному гільбертовому просторі , ортонормована система векторів утворює ортонормований базис тоді і тільки тоді, коли вона задовільняє наступним умовам[1]:
- Довільний вектор може бути записано у вигляді:
, де (k = 1, 2, …) - Для будь-якого вектора
(рівність Персеваля) - Для довільної пари векторів та
- Ортонормована система u1, u2, … не міститься в жодній іншій ортонормованій системі простору . Для довільного вектора із (uk, a) = 0 (k = 1, 2, …) випливає, що a = 0.
З кожної із цих чотирьох умов випливають три інших.
Звернемо увагу на те, що якщо a та a' — два вектори з одними і тими ж координатами âk то ǁa − a' ǁ = 0 (теорема єдиності).
- ↑ Корн Г., Корн Т. (1984). 14.7-4. Справочник по математике для научних работников и инженеров (рос.) (вид. друге). Москва: Наука.
- Гельфанд І. М. Лекції з лінійної алгебри. — 2025. — 248 с.(укр.)
- Гантмахер Ф. Р. Теорія матриць. — 2025. — 757 с.(укр.)
- Гантмахер Ф. Р., Крейн М. Г. Осциляційні матриці та ядра та малі коливання механічних систем. — 2025. — 400 с.(укр.)
- Ахієзер Н.І., Глазман І.М. Теорія лінійних операторів у гільбертовому просторі. — 2025. — 663 с.(укр.)
- Чарін В.С. (2005). Лінійна алгебра (PDF). Київ: Техніка. с. 416.(укр.)
- Безущак О. О.; Ганюшкін О. Г.; Кочубінська Є. А. (2019). Навчальний посібник з лінійної алгебри (PDF). Київ: ВПЦ "Київський університет". с. 224.(укр.)
- В. В. Булдигін; І. В. Алєксєєва; В. О. Гайдей; О. О. Диховичний; Н. Р. Коновалова; Л. Б. Федорова (2011). Лінійна алгебра та аналітична геометрія Навч. посібник (PDF). Київ: ТВіМС. с. 224.(укр.)
![]() | Це незавершена стаття з математики. Ви можете допомогти проєкту, виправивши або дописавши її. |