Büyük sayılar yasası

Vikipedi, özgür ansiklopedi

Tek bir Şablon:Zar'ın birçok kez atılarak Büyük Sayılar Yasası'a uyan bir sonuç vermesine dair bir örnek. Zar atış sayısı arttıkça, tüm sonuçların değerlerinin ortalaması 3,5'e yaklaşır. Görselde dikey eksen ortalama değeri, yatay eksen ise deneme sayısını vermektedir. Yeşil çizgi beklenen 3,5 değerine karşılık gelirken, kırmızı çizgi ise zar atışlarının ortalama sonuçlarını deneme sayısının çizdirilmesiyle elde edilmiştir.

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

Büyük Sayılar Kanunu bir zarın peş peşe atılması ile örneklenebilir. Öyle ki, multinom dağılımı sonucunda 1, 2, 3, 4, 5 ve 6 sayılarının gelme olasılığı eşittir. Bu sonuçların aritmetik ortalaması (ya da "beklenen değeri"),

(1+2+3+4+5+6)/6=3,5 olur.

Sağdaki grafik bir zarın atılması deneyinin sonuçlarını göstermektedir. Bu deneyde görürüz ki, ilk başta zar atışlarının ortalaması fazlaca dalgalanmaktadır. Büyük sayılar yasası tarafından öngörüldüğü üzere, gözlem sayısı arttıkça, ortalama, beklenen değerin yani 3,5'in etrafında dengelenmektedir.

Bir başka örnek madeni para atılması olabilir. Bir madeni paranın peş peşe atılması durumunda, yazıların (ya da turaların) sıklığı, gözlem sayısı arttıkça, %50'ye gittikçe yaklaşacaktır. Fakat yazı ve tura sayıları arasındaki mutlak fark, atış sayısı arttıkça açılacaktır.[1] Örneğin, 1000 atıştan sonra 520 ve 10000 atıştan sonra 5096 yazı görebiliriz. Ortalama,%52'den %50,96'ya gittiği, gerçek %50'ye yaklaştığı halde, ortalamadan toplam fark 40'tan 192'ye yükselmiştir.

Büyük Sayılar Kanunu büyük bir önem taşır, çünkü rastgele olaylardan kararlı uzun-vadeli sonuçlar alınacağını "garanti eder". Örneğin, bir gazino tek bir Amerikan Rulet dönüşünden para kaybedebilir, ama 1000'lerce dönüşe oynanan paranın tamamının %5,3'üne yakınını neredeyse kesin olarak kazanacaktır. Bir oyuncunun herhangi bir kazancı, sonuçta oyunun başlıca parametreleri tarafından soğurulacaktır. Büyük sayılar yasasının büyük sayıda gözlem yapıldığı zaman etkili olacağı unutulmamalıdır. Küçük miktardaki gözlem için sonucun beklenen değere yaklaşacağını veya bir sapmanın hemen bir başkasıyla "dengeleneceğini" beklemek için bir neden yoktur, ki bu duruma Monte Carlo Yanılgısı ya da kumarbaz aldanması denir.

Büyük Sayılar Kanunu ilk olarak Jacob Bernoulli tarafından tanımlanmıştır.[2] 1713'te Ars Conjectandi (Varsayımın Sanatı) adlı eserinde yayınlanan yeterli derecede titiz bir kanıtı geliştirebilmesi 20 yılına mâl olmuştur.Jacob Bernoulli, bu bulguyu "Altın Teoremi" olarak adlandırmış, fakat sonradan yaygın olarak "Bernoulli'nin Kuramı" olarak kullanılmıştır (Bernoulli Kuramı fizik kuramıyla karıştırılmaması gerekir). 1835'te S.D. Poisson, bu yasayı "La Loi Des Grands Nombres" (Büyük sayılar yasası) olarak adlandırmıştır.[3] İki isimde de anılan bu yasa için "Büyük sayılar yasası" terimi daha sık kullanılmaktadır.

Bernoulli ve Poisson kendi çalışmalarını yayımladıktan sonra, Chebyshev, Markov, Borel, Cantelli ve Kolmogorov'un da aralarında yer aldığı diğer matematikçiler de yasanın gelişmesine katkıda bulunmuşlardır. Bu çalışmalar yasanın iki belirgin biçiminin ortaya konulmasında etkili olmuştur. Bu biçimlerden biri "zayıf" yasa, diğeri de "güçlü" yasa olarak adlandırılır. Bu biçimler farklı yasaları tanımlamamaktadır, sadece ölçülmüş olasılığın, gerçek olasılığa yakınsamasını tanımlamanın farklı yollarıdır ve büyük olan küçüğü içerir.

X1, X2, ... şeklinde, E(X1) = E(X2) = ... = µ < ∞ biçiminde ifade edilebilecek sonlu bir beklenen değere sahip, sonsuz sayıda i.i.d. (bağımsız ve özdeş dağılmış rastgele değişken) rastgele değişken serisi verildiğinde, örneklemin ortalamasının yakınsadığı değeri arıyoruz:

Büyük sayılar yasası - Zayıf yasa

[değiştir | kaynağı değiştir]

Teorem:

Chebyshev'in eşitsizliğini kullanarak kanıtı

[değiştir | kaynağı değiştir]

Bu kanıt veryansın sonlu olduğu varsayımına dayanır: (tüm değerleri için). Rastgele değişkenlerin bağımsız olması, aralarında herhangi bir korelasyon olmadığını belirtir ve ayrıca

Serinin genel ortalaması μ, örneklemin ortalamasıdır:

Chebyshev'in eşitsizliğini üzerinde kullanarak

elde edilebilir. Bu, aşağıdakini elde etmek için kullanılabilir:

n sonsuza gittikçe, ifadenin değeri 1'e yaklaşır. Olasılıktaki yakınsama tanımı (bkz. Rastgele değişkenlerin yakınsaması) gereği,

sonucu elde edilir.

Karakteristik fonksiyonların yakınsamasını kullanarak kanıtı

[değiştir | kaynağı değiştir]

Karmaşık fonksiyonlardaki Taylor'un teoremi gereğince herhangi bir rastgele değişkenin karakteristik fonksiyonu, X, μ sonlu ortalamasıyla, aşağıdaki şekilde yazılabilir:

Tüm X1, X2, ... değişkenleri aynı karakteristik fonksiyona sahiptir, böylece bunu φX ile belirtebiliriz.

Karakteristik fonksiyonların basit özelliklerini kullanarak

Bu kurallar, 'in φX: cinsinden karakteristik fonksiyonunu hesaplamak için kullanılabilir:

Limit eitμ, sabit rastgele değişken μ'nün karakteristik fonksiyonudur ve Lévy süreklilik teoremi gereğince, dağılımda μ değerine yakınsar:

μ, dağılımdaki μ'ye yakınsamanın ve olasılıktaki μ'ye yakınsamanın eşit olduğunu ifade eden bir sabittir. (Bkz. Rastgele değişkenlerin yakınsaması) Bu da şu anlama gelir:

Bu kanıt gerçekte şu anlama gelmektedir ki, olasılıkta örneklem ortalaması, var olduğu sürece, merkezdeki karakteristik fonksiyonun türevine yakınsar.

Yasanın her iki ifadesi de örneklem ortalamasının

beklenen değere yakınsadığını

ifade eder. Burada X1, X2, ... değerleri E(X1)=E(X2) = ... = µ < ∞ beklenen değerlerine sahip, bağımsız ve eş aralıklı (i.i.d.) sonsuz rassal değişken sırasını simgeler.

Bir sonlu varyans Var(X1) = Var(X2) = ... = σ2 < ∞ varsayımına ihtiyaç yoktur. Büyük veya sonsuz varyans yakınsamayı daha yavaş kılacaktır, fakat büyük sayılar yasası hala geçerlidir. Kanıtları daha kolay ve kısa tutmak için bu varsayım genellikle yapılır.

Güçlü ve zayıf ifadeler arasındaki fark, hangi tür yakınsamadan bahsettiğimizdir.

Büyük sayıların zayıf yasası belirtmektedir ki, örneklem ortalamasının olasılıkta yakınsaması beklenen değere doğru gerçekleşir

Bu, herhangi bir pozitif ε sayısı için

(Kanıt)

Olasılıkta yakınsamayı yorumlamak isteyecek olursak, zayıf yasa der ki, birçok gözlemin ortalaması giderek ne kadar küçük olduğuna bakılmaksızın, verilen herhangi bir sıfırdan farklı sınır dahilinde olmak üzere, ortalamaya yakın olacaktır.

Bu ifadeye zayıf yasa denir, çünkü olasılıkta yakınsama, rassal değişkenlerin zayıf yakınsamasıdır.

Zayıf büyük sayılar yasasının bir sonucu asimptotik eşdağılım özelliğidir.

Büyük sayıların güçlü yasası der ki, örneklem ortalamasının olasılıkta yakınsaması neredeyse kesin olarak beklenen değere doğru gerçekleşir.

Bu demektir ki,

Kanıt, zayıf yasadan daha karmaşıktır. Bu yasa bir rassal değişkenin beklenen değerini "art arda örneklemin uzun-vadeli ortalaması" olan sezgisel yorumunu doğrular.

Bu ifade güçlü yasa olarak adlandırılmıştır, çünkü yakınsama, rassal değişkenlerin güçlü yakınsamasıdır. Güçlü yasa, zayıfı kapsar.

Büyük sayıların güçlü yasası, ergodik teorem'in özel durumu olarak görülebilir.

Etkinlikler ve gösteriler

[değiştir | kaynağı değiştir]

Kuramı ve büyük sayılar yasasının uygulamalarını interaktif araçlarla görselleştiren çeşitli uygulamalar mevcuttur. SOCR adlı hands-on learning activity15 Mart 2020 tarihinde Wayback Machine sitesinde arşivlendi. kaynak ile beraber Java applet (select the Coin Toss LLN Experiment)28 Aralık 2014 tarihinde Wayback Machine sitesinde arşivlendi. sitesinde yer alan örnekler büyük sayılar yasasını güzel bir şekilde ifade eder.

Ayrıca bakınız

[değiştir | kaynağı değiştir]
  1. ^ Tijms, Henk (2007). Understanding Probability: Chance Rules in Everyday Life. Cambridge University Press. s. 17. ISBN 978-0-521-70172-3. 
  2. ^ Jakob Bernoulli, Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis, 1713, Chapter 4,(Translated into English by Oscar Sheynin)
  3. ^ Hacking, Ian. (1983) "19th-century Cracks in the Concept of Determinism"
  • Grimmett, G. R.; Stirzaker, D. R. (1992). Probability and Random Processes, 2nd Edition. Clarendon Press, Oxford. ISBN 0-19-853665-8. 
  • Durrett, Richard (1995). Probability: Theory and Examples, 2nd Edition. Duxbury Press. 
  • Jacobsen, Martin (1992). Videregående Sandsynlighedsregning (Advanced Probability Theory) 3rd Edition. HCØ-tryk, Copenhagen. ISBN 87-91180-71-6. 

Dış bağlantılar

[değiştir | kaynağı değiştir]
  • [1] 4 Eylül 2021 tarihinde Wayback Machine sitesinde arşivlendi. MathWorld: Zayıf büyük sayılar yasası.
  • [2] 23 Eylül 2008 tarihinde Wayback Machine sitesinde arşivlendi. MathWorld: Güçlü büyük sayılar yasası.
  • [3] Şans tabloları yasası - rastgele şansa bağlanabilenden daha büyük olduğu iddia edilen başarıların sınanması için kullanılır.