Уравнения Максвелла

Из Википедии, бесплатной энциклопедии

Классическая электродинамика
Электричество · Магнетизм
См. также: Портал:Физика

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).

Уравнения Максвелла в дифференциальной форме[править | править код]

Уравнения Максвелла представляют собой в векторной записи систему из четырёх уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных[~ 1]) линейным дифференциальным уравнениям в частных производных первого порядка для 12 компонент четырёх векторных и псевдовекторных функций (). Запись уравнений Максвелла и других законов электродинамики отличается в различных системах единиц[⇨]; в связи с этим все соотношения далее приводятся в двух вариантах — в международной системе единиц (СИ) и в симметричной гауссовой СГС[~ 2], если они по-разному записываются в этих системах.

Название
СГС
СИ
Примерное словесное выражение
Закон Гаусса
Электрический заряд является источником электрической индукции.
Закон Гаусса для магнитного поля
Магнитные заряды не обнаружены.[~ 3]
Закон индукции Фарадея
Изменение магнитной индукции порождает вихревое электрическое поле.[~ 3]
Теорема о циркуляции магнитного поля
Электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Жирным шрифтом в дальнейшем обозначаются векторные и псевдовекторные величины, курсивом — скалярные.

Введённые обозначения:

  •  — объёмная плотность стороннего электрического заряда (в единицах СИ — Кл/м³);
  •  — плотность электрического тока (плотность тока проводимости) (в единицах СИ — А/м²); в простейшем случае — случае тока, порождаемого одним типом носителей заряда, она выражается просто как , где  — (средняя) скорость движения этих носителей в окрестности данной точки,  — плотность заряда этого типа носителей (она в общем случае не совпадает с )[~ 4]; в общем случае это выражение надо усреднить по разным типам носителей;
  •  — скорость света в вакууме (299 792 458 м/с);
  •  — напряжённость электрического поля (в единицах СИ — В/м);
  •  — напряжённость магнитного поля (в единицах СИ — А/м);
  •  — электрическая индукция (в единицах СИ — Кл/м²);
  •  — магнитная индукция (в единицах СИ — Тл = Вб/м² = кгс−2•А−1);
  •  — дифференциальный оператор набла, при этом:
    означает ротор вектора ,
    означает дивергенцию вектора .

Приведённые выше уравнения Максвелла не составляют ещё полной системы уравнений электромагнитного поля, поскольку они не содержат свойств среды, в которой возбуждено электромагнитное поле. Соотношения, связывающие величины , , , и и учитывающие индивидуальные свойства среды, называются материальными уравнениями.

Уравнения Максвелла в интегральной форме[править | править код]

При помощи формулы Остроградского — Гаусса и теоремы Стокса дифференциальным уравнениям Максвелла можно придать форму интегральных уравнений:

Название
СГС
СИ
Примерное словесное выражение
Закон Гаусса
Поток электрической индукции через замкнутую поверхность пропорционален величине свободного заряда, находящегося в объёме, ограниченном этой поверхностью.
Закон Гаусса для магнитного поля
Поток магнитной индукции через замкнутую поверхность равен нулю (магнитные заряды не обнаружены[~ 3]).
Закон индукции Фарадея
Изменение потока магнитной индукции, проходящего через незамкнутую поверхность , взятое с обратным знаком, пропорционально циркуляции электрического поля на замкнутом контуре , который является границей поверхности [~ 3].
Теорема о циркуляции магнитного поля
Полный электрический ток свободных зарядов и изменение потока электрической индукции через незамкнутую поверхность пропорциональны циркуляции магнитного поля на замкнутом контуре , который является границей поверхности .
Поток электрического поля через замкнутую поверхность

Введённые обозначения:

  •  — двумерная замкнутая в случае теоремы Гаусса поверхность, ограничивающая объём , и открытая поверхность в случае законов Фарадея и Ампера — Максвелла (её границей является замкнутый контур ).
  •  — электрический заряд, заключённый в объёме , ограниченном поверхностью (в единицах СИ — Кл);
  •  — электрический ток, проходящий через поверхность (в единицах СИ — А).

При интегрировании по замкнутой поверхности вектор элемента площади направлен из объёма наружу. Ориентация при интегрировании по незамкнутой поверхности определяется направлением правого винта, «вкручивающегося» при повороте в направлении обхода контурного интеграла по .

Словесное описание законов Максвелла, например, закона Фарадея, несёт отпечаток традиции, поскольку вначале при контролируемом изменении магнитного потока регистрировалось возникновение электрического поля (точнее электродвижущей силы). В общем случае в уравнениях Максвелла (как в дифференциальной, так и в интегральной форме) векторные функции являются равноправными неизвестными величинами, определяемыми в результате решения уравнений.

Сила Лоренца[править | править код]

При решении уравнений Максвелла распределения зарядов и токов часто считаются заданными. С учётом граничных условий и материальных уравнений это позволяет определить напряжённость электрического поля и магнитную индукцию , которые, в свою очередь, определяют силу, действующую на пробный заряд , движущийся со скоростью . Эта сила называется силой Лоренца:

СГС
СИ

Электрическая составляющая силы направлена параллельно электрическому полю, а магнитная — перпендикулярна скорости заряда и магнитной индукции. Впервые выражение для силы, действующей на заряд в магнитном поле (электрическая компонента была известна), получил в 1889 году Хевисайд[1][2] за три года до Хендрика Лоренца, который вывел выражение для этой силы в 1892 году.

В более сложных ситуациях в классической и квантовой физике в случае, когда под действием электромагнитных полей свободные заряды перемещаются и изменяют значения полей, необходимо решение самосогласованной системы из уравнений Максвелла и уравнений движения, включающих силы Лоренца. Получение точного аналитического решения такой полной системы сопряжено обычно с большими сложностями. Важным примером такой системы уравнений для самосогласованного поля являются уравнения Власова — Максвелла, описывающие динамику плазмы.

Размерные константы в уравнениях Максвелла[править | править код]

В гауссовой системе единиц СГС все поля имеют одинаковую размерность, и в уравнениях Максвелла фигурирует единственная фундаментальная константа , имеющая размерность скорости, которая сейчас называется скоростью света (именно равенство этой константы скорости распространения света дало Максвеллу основания для гипотезы об электромагнитной природе света[3]).

В системе единиц СИ, чтобы связать электрическую индукцию и напряжённость электрического поля в вакууме, вводится электрическая постоянная (). Магнитная постоянная является таким же коэффициентом пропорциональности для магнитного поля в вакууме (). Названия электрическая постоянная и магнитная постоянная сейчас стандартизованы. Ранее для этих величин также использовались, соответственно, названия электрическая (диэлектрическая) и магнитная проницаемости вакуума[4][5].

Скорость электромагнитного излучения в вакууме (скорость света) в СИ появляется при выводе волнового уравнения:

В системе единиц СИ в качестве точной размерной константы определена скорость света в вакууме , а магнитная постоянная после изменения 2018—2019 годов является экспериментально определяемой величиной. Через них выражается электрическая постоянная .

Значения[6] скорости света, электрической и магнитной постоянных приведены в таблице:

Символ
Наименование
Численное значение
Единицы измерения СИ
Постоянная скорости света
(точно)
м/с
Магнитная постоянная
Гн
Электрическая постоянная
Ф

Иногда вводится величина, называемая «волновым сопротивлением вакуума», или «импедансом» вакуума:

Ом.

В системе СГС . Эта величина имеет смысл отношения амплитуд напряжённостей электрического и магнитного полей плоской электромагнитной волны в вакууме. Однако приписать этой величине физический смысл волнового сопротивления нельзя, поскольку в той же системе СГС её размерность не совпадает с размерностью сопротивления[7].

Уравнения Максвелла в среде[править | править код]

Чтобы получить полную систему уравнений электродинамики, к системе уравнений Максвелла необходимо добавить материальные уравнения, связывающие величины , , , , , в которых учтены индивидуальные свойства среды. Способ получения материальных уравнений дают молекулярные теории поляризации, намагниченности и электропроводности среды, использующие идеализированные модели среды. Применяя к ним уравнения классической или квантовой механики, а также методы статистической физики, можно установить связь между векторами , , с одной стороны и , с другой стороны.

Связанные заряды и токи[править | править код]

Слева: Совокупность микроскопических диполей в среде образует один макроскопический дипольный момент и эквивалентна двум заряженным с противоположным знаком пластинам на границе. При этом внутри среды все заряды скомпенсированы; Справа: Совокупность микроскопических циркулярных токов в среде эквивалентна макроскопическому току, циркулирующему вдоль границы. При этом внутри среды все токи скомпенсированы.

При приложении электрического поля к диэлектрическому материалу каждая из его молекул превращается в микроскопический диполь. При этом положительные ядра атомов немного смещаются в направлении поля, а электронные оболочки в противоположном направлении. Кроме этого, молекулы некоторых веществ изначально имеют дипольный момент. Дипольные молекулы стремятся ориентироваться в направлении поля. Этот эффект называется поляризацией диэлектриков. Такое смещение связанных зарядов молекул в объёме эквивалентно появлению некоторого распределения зарядов на поверхности, хотя все молекулы, вовлечённые в процесс поляризации, остаются нейтральными (см. рисунок).

Аналогичным образом происходит магнитная поляризация (намагничивание) в материалах, в которых составляющие их атомы и молекулы имеют магнитные моменты, связанные со спином и орбитальным моментом ядер и электронов. Угловые моменты атомов можно представить в виде циркулярных токов. На границе материала совокупность таких микроскопических токов эквивалентна макроскопическим токам, циркулирующим вдоль поверхности, несмотря на то, что движение зарядов в отдельных магнитных диполях происходит лишь в микромасштабе (связанные токи).

Рассмотренные модели показывают, что хотя внешнее электромагнитное поле действует на отдельные атомы и молекулы, его поведение во многих случаях можно рассматривать упрощённым образом в макроскопическом масштабе, игнорируя детали микроскопической картины.

В среде сторонние электрические и магнитные поля вызывают поляризацию и намагничивание вещества, которые макроскопически описываются соответственно вектором поляризованности и вектором намагниченности вещества, и вызваны появлением связанных зарядов и токов . В результате поле в среде оказывается суммой внешних полей и полей, вызванных связанными зарядами и токами.

СГС
СИ

Поляризованность и намагниченность вещества связаны с векторами напряжённости и индукции электрического и магнитного поля следующими соотношениями:

СГС
СИ

Поэтому, выражая векторы и через , , и , можно получить математически эквивалентную систему уравнений Максвелла:

СГС
СИ

Индексом здесь обозначены свободные заряды и токи. Уравнения Максвелла в такой форме являются фундаментальными в том смысле, что они не зависят от модели электромагнитного устройства вещества. Разделение зарядов и токов на свободные и связанные позволяет «спрятать» в , , а затем в и, следовательно, в сложный микроскопический характер электромагнитного поля в среде.

Материальные уравнения[править | править код]

Материальные уравнения устанавливают связь между и . При этом учитываются индивидуальные свойства среды. На практике в материальных уравнениях обычно используются экспериментально определяемые коэффициенты (зависящие в общем случае от частоты электромагнитного поля), которые собраны в различных справочниках физических величин[8].

СГС
СИ

где введены безразмерные константы:  — диэлектрическая восприимчивость и  — магнитная восприимчивость вещества (в системе единиц СИ эти константы в раз больше, чем в гауссовой системе СГС). Соответственно, материальные уравнения для электрической и магнитной индукций записываются в следующем виде:

СГС
СИ

где  — относительная диэлектрическая проницаемость,  — относительная магнитная проницаемость. Размерные величины (в единицах СИ — Ф/м) и (в единицах СИ — Гн/м), возникающие в системе СИ, называются абсолютная диэлектрическая проницаемость и абсолютная магнитная проницаемость соответственно.

  • В проводниках существует связь между плотностью тока и напряжённостью электрического поля, в хорошем приближении выражаемая законом Ома:

где  — удельная проводимость среды (в единицах СИ — Ом−1м−1).

  • В анизотропной среде , и являются тензорами , и . В системе координат главных осей они могут быть описаны диагональными матрицами. В этом случае связь между напряжённостями полей и индукциями имеют различные коэффициенты по каждой координате. Например, в системе СИ:
  • Хотя для широкого класса веществ линейное приближение для слабых полей выполняется с хорошей точностью, в общем случае зависимость между и может быть нелинейной. В этом случае проницаемости среды не являются константами, а зависят от величины поля в данной точке. Кроме того, более сложная связь между и наблюдается в средах с пространственной или временной дисперсиями. В случае пространственной дисперсии токи и заряды в данной точке пространства зависят от величины поля не только в той же точке, но и в соседних точках. В случае временной дисперсии поляризованность и намагниченность среды не определяются только величиной поля в данный момент времени, а зависят также от величины полей в предшествующие моменты времени. В самом общем случае нелинейных и неоднородных сред с дисперсией материальные уравнения в системе СИ принимают интегральный вид:

Аналогичные уравнения получаются в гауссовой системе СГС (если формально положить ).

Уравнения в изотропных и однородных средах без дисперсии[править | править код]

В изотропных и однородных средах без дисперсии уравнения Максвелла принимают следующий вид:

СГС
СИ

В оптическом диапазоне частот вместо диэлектрической проницаемости используется показатель преломления , показывающий отличие скорости распространения монохроматической световой волны в среде от скорости света в вакууме. При этом в оптическом диапазоне диэлектрическая проницаемость обычно заметно меньше, чем на низких частотах, а магнитная проницаемость большинства оптических сред практически равна единице. Показатель преломления большинства прозрачных материалов составляет от 1 до 2, достигая 5 у некоторых полупроводников[9]. В вакууме и диэлектрическая, и магнитная проницаемости равны единице: .

Поскольку уравнения Максвелла в линейной среде являются линейными относительно полей и свободных зарядов и токов , справедлив принцип суперпозиции:

Если распределения зарядов и токов создают электромагнитное поле с компонентами , а другие распределения создают, соответственно, поле , то суммарное поле, создаваемое источниками , будет равно .

При распространении электромагнитных полей в линейной среде в отсутствие зарядов и токов сумма любых частных решений уравнений будет также удовлетворять уравнениям Максвелла.

Граничные условия[править | править код]

Во многих случаях неоднородную среду можно представить в виде совокупности кусочно-непрерывных однородных областей, разделённых бесконечно тонкими границами. При этом можно решать уравнения Максвелла в каждой области, «сшивая» на границах получающиеся решения. В частности, при рассмотрении решения в конечном объёме необходимо учитывать условия на границах объёма с окружающим бесконечным пространством. Граничные условия получаются из уравнений Максвелла предельным переходом. Для этого проще всего воспользоваться уравнениями Максвелла в интегральной форме.

Выбирая во второй паре уравнений контур интегрирования в виде прямоугольной рамки бесконечно малой высоты, пересекающей границу раздела двух сред, можно получить следующую связь между компонентами поля в двух областях, примыкающих к границе[10]:

СГС
СИ
,
,
,
,

где  — единичный вектор нормали к поверхности, направленный из среды 1 в среду 2 и имеющий размерность, обратную длине,  — плотность поверхностных свободных токов вдоль границы (то есть не включая связанных токов намагничивания, складывающихся на границе среды из микроскопических молекулярных и т.п. токов). Первое граничное условие можно интерпретировать как непрерывность на границе областей тангенциальных компонент напряжённостей электрического поля (из второго следует, что тангенциальные компоненты напряжённости магнитного поля непрерывны только при отсутствии поверхностных токов на границе).

Аналогичным образом, выбирая область интегрирования в первой паре интегральных уравнений в виде цилиндра бесконечно малой высоты, пересекающего границу раздела так, что его образующие перпендикулярны границе раздела, можно получить:

СГС
СИ
,
,
,
,

где  — поверхностная плотность свободных зарядов (то есть не включающая в себя связанных зарядов, возникающих на границе среды вследствие диэлектрической поляризации самой среды).

Эти граничные условия показывают непрерывность нормальной компоненты вектора магнитной индукции (нормальная компонента электрической индукции непрерывна только при отсутствии на границе поверхностных зарядов).

Из уравнения непрерывности можно получить граничное условие для токов:

,

Важным частным случаем является граница раздела диэлектрика и идеального проводника. Поскольку идеальный проводник имеет бесконечную проводимость, электрическое поле внутри него равно нулю (иначе оно порождало бы бесконечную плотность тока). Тогда в общем случае переменных полей из уравнений Максвелла следует, что и магнитное поле в проводнике равно нулю. В результате тангенциальная компонента электрического и нормальная магнитного поля на границе с идеальным проводником равны нулю:

СГС
СИ
,
,
,
,
,
,
,
,

Законы сохранения[править | править код]

Уравнения Максвелла содержат в себе законы сохранения заряда и энергии электромагнитного поля.

Уравнение непрерывности[править | править код]

Источники полей () не могут быть заданы произвольным образом. Применяя операцию дивергенции к четвёртому уравнению (закон Ампера—Максвелла) и используя первое уравнение (закон Гаусса), можно получить уравнение непрерывности для зарядов и токов:

Это уравнение при помощи интегральной теоремы Остроградского—Гаусса можно записать в следующем виде:

В левой части уравнения находится полный ток, протекающий через замкнутую поверхность . В правой части — изменение со временем заряда, находящегося внутри объёма . Таким образом, изменение заряда внутри объёма возможно только при его притоке или оттоке через поверхность , ограничивающую объём.

Уравнение непрерывности, эквивалентное закону сохранения заряда, далеко выходит за пределы классической электродинамики, оставаясь справедливым и в квантовой теории. Поэтому это уравнение само по себе может быть положено в основу электромагнитной теории. Тогда, например, ток смещения (производная по времени электрического поля) должен обязательно присутствовать в законе Ампера.

Из уравнений Максвелла для роторов и уравнения непрерывности с точностью до произвольных функций, не зависящих от времени, следуют законы Гаусса для электрического и магнитного полей.

Закон сохранения энергии[править | править код]

Если умножить третье уравнение Максвелла в дифференциальной форме (закон Фарадея) скалярно на , а четвёртое (закон Ампера — Максвелла) на и сложить результаты, можно получить теорему Пойнтинга:

где

СГС СИ

Вектор называется вектором Пойнтинга (вектором плотности потока электромагнитной энергии) и определяет количество электромагнитной энергии, переносимой через единицу площади в единицу времени. Интеграл вектора Пойнтинга по сечению распространяющейся волны определяет её мощность. Как впервые указал Хевисайд, физический смысл потока энергии имеет только безвихревая часть вектора Пойнтинга. Вихревая часть, дивергенция которой равна нулю, не связана с переносом энергии. Хевисайд получил выражение для закона сохранения независимо от Пойнтинга. В русскоязычной литературе вектор Пойнтинга часто называется также «вектором Умова — Пойнтинга».

Величины и определяют объёмные плотности энергии, соответственно, электрического и магнитного полей. При отсутствии токов и связанных с ними потерь теорема Пойнтинга является уравнением непрерывности для энергии электромагнитного поля. Проинтегрировав его в этом случае по некоторому замкнутому объёму и воспользовавшись теоремой Остроградского — Гаусса, можно получить закон сохранения энергии для электромагнитного поля:

Это уравнение показывает, что при отсутствии внутренних потерь изменение энергии электромагнитного поля в объёме происходит только за счёт мощности электромагнитного излучения, переносимого через границу этого объёма.

Вектор Пойнтинга связан с импульсом электромагнитного поля[11]:

где интегрирование производится по всему пространству. Электромагнитная волна, поглощаясь или отражаясь от некоторой поверхности, передаёт ей часть своего импульса, что проявляется в форме светового давления. Экспериментально этот эффект впервые наблюдался П. Н. Лебедевым в 1899 году.

Потенциалы[править | править код]

Скалярный и векторный потенциалы[править | править код]

Закон Фарадея и закон Гаусса для магнитной индукции выполняются тождественно, если электрическое и магнитное поля выразить через скалярный и векторный потенциалы[12]:

СГС
СИ

При данных электрическом и магнитном полях скалярный и векторный потенциалы определены неоднозначно. Если  — произвольная функция координат и времени, то следующее преобразование не изменит значение полей:

СГС
СИ

Подобные преобразования играют важную роль в квантовой электродинамике и лежат в основе локальной калибровочной симметрии электромагнитного взаимодействия. Локальная калибровочная симметрия вводит зависимость от координат и времени в фазу глобальной калибровочной симметрии, которая, в силу теоремы Нётер, приводит к закону сохранения заряда.

Неоднозначность определения потенциалов оказывается удобной для наложения на них дополнительных условий, называемых калибровкой. Благодаря этому уравнения электродинамики принимают более простой вид. Рассмотрим, например, уравнения Максвелла в однородных и изотропных средах с диэлектрической () и магнитной () проницаемостями. Для данных и всегда можно подобрать такую функцию , чтобы выполнялось калибровочное условие Лоренца[13]:

СГС
СИ

В этом случае оставшиеся уравнения Максвелла в однородных и изотропных средах могут быть записаны в следующем виде:

СГС
СИ

где  — оператор Д’Аламбера, который и в системе СГС, и в системе СИ имеет вид:

Таким образом, 8 уравнений Максвелла (уравнения первого порядка) для компонент электромагнитного поля (2 векторных и 2 скалярных) при помощи потенциалов могут быть сведены к 4 уравнениям, но уже второго порядка (скалярному для и векторному для ). Решения этих уравнений для произвольно движущегося точечного заряда называются потенциалами Лиенара — Вихерта[14].

Возможно введение других калибровок. Так, для решения ряда задач удобной оказывается кулоновская калибровка:

В этом случае:

СГС
СИ

,

где  — соленоидальная часть тока ().

Первое уравнение описывает мгновенное (без запаздывания) действие кулоновской силы, поскольку кулоновская калибровка не инвариантна относительно преобразований Лоренца. При этом энергию кулоновского взаимодействия можно отделить от остальных взаимодействий, что облегчает квантование поля в гамильтоновом формализме[15].

Векторный потенциал играет большую роль в электродинамике и в квантовой теории поля, однако для исследования процессов распространения электромагнитных волн в отсутствие токов и зарядов его введение часто не приводит к упрощению системы, а сводится к простой замене векторов электрического и магнитного поля на другой аналогичный вектор, описываемый теми же уравнениями. Так, для гармонических полей векторный потенциал будет просто пропорционален электрическому полю (скалярный потенциал при этом можно положить равным нулю).

Векторы Герца[править | править код]

  • В 1887 году Генрих Герц предложил вместо непосредственного решения уравнений Максвелла для двух векторных функций электрического и магнитного полей или скалярного и векторного потенциалов перейти к новой единственной векторной функции, которая носит теперь имя электрического вектора Герца и позволяет в некоторых случаях упростить решение электродинамических задач, сводя их к решению скалярного волнового уравнения.
СГС
СИ

Заметим, что скалярный и векторный потенциалы, выраженные через вектор Герца, автоматически удовлетворяют калибровочному условию Лоренца. Вектор Герца учитывает все поля, связанные со свободными зарядами и их токами.

Подставляя выражения для полей через электрический вектор в два последних уравнения Максвелла, можно получить[16][17]:

СГС
СИ

Здесь введён вектор поляризованности свободных зарядов и токов:

(при этом уравнение непрерывности для заряда автоматически выполняется).

Таким образом, электрический вектор Герца определяется волновыми уравнениями, в правой части которых стоит поляризуемость, обусловленная свободными либо свободными и связанными зарядами, то есть электрическими дипольными моментами.

  • В 1901 году парный электрическому вектору Герца магнитный вектор, который также традиционно называют именем Герца, ввёл итальянский физик Аугусто Риги[18].
СГС
СИ

Поскольку поля, описываемые магнитным вектором Герца, не зависят от свободных зарядов и токов, а магнитные монополи не обнаружены, потенциалы удовлетворяют калибровке Лоренца в вырожденном виде — так называемой кулоновской калибровке (, ).

Аналогичным образом можно получить уравнения для магнитного потенциала Герца, подставляя выраженные через него поля в третье и четвёртое уравнения Максвелла без тока:

СГС
СИ

Действие сторонних магнитных полей, связанных с внешними источниками, может быть учтено по аналогии с электрическим вектором Герца введением в правые части дополнительной магнитной поляризации .

Таким образом, выделяется два типа электромагнитных полей, выражающихся через электрический и магнитный потенциалы Герца, а произвольное поле можно представить в виде суммы таких полей. Поля, выражающиеся через электрический вектор Герца, носят название полей электрического типа, или поперечно-магнитных (TM) полей, поскольку магнитное поле для них ортогонально направлению вектора Герца. Соответственно, поля, выражающиеся через магнитный вектор Герца, называют полями магнитного типа, или поперечно-электрическими полями (TE), электрическое поле в которых ортогонально порождающему вектору Герца. Поля TM можно представить как поля, порождаемые распределёнными в пространстве электрическими диполями, а поля TE, соответственно, магнитными. Векторные потенциалы Герца, в свою очередь, могут быть во многих случаях выражены через скалярные потенциалы.

Потенциалы Дебая[править | править код]

В электродинамике широко используются скалярные потенциалы, предложенные Дебаем[19].

Волновое уравнение представляет собой систему трёх связанных скалярных уравнений, которые распадаются на три скалярных уравнения Гельмгольца только в декартовой системе координат. Для удобства поиска решений, удовлетворяющих граничным условиям, желательно выбирать координатные системы, координатные поверхности которых близки или совпадают с поверхностями границ. Один из подходов к решению векторного уравнения Гельмгольца состоит во введении скалярных функций , удовлетворяющих скалярному волновому уравнению Гельмгольца, через которые затем могут быть выражены векторные поля[20]:

Здесь  — некоторая векторная функция координат. Вектор