Распределение Фишера (Распределение Снедекора) |
---|
Плотность вероятности |
Функция распределения |
Обозначение |  |
Параметры | - числа степеней свободы |
Носитель |  |
Плотность вероятности |  |
Функция распределения |  |
Математическое ожидание | , если  |
Мода | , если  |
Дисперсия | если  |
Коэффициент асимметрии |  если  |
Производящая функция моментов | не существует[1] |
Распределе́ние Фи́шера в теории вероятностей — это двухпараметрическое семейство абсолютно непрерывных распределений.
Пусть
— две независимые случайные величины, имеющие распределение хи-квадрат:
, где
. Тогда распределение случайной величины
называется распределением Фишера (распределением Снедекора) со степенями свободы
и
. Пишут
.
Математическое ожидание и дисперсия случайной величины, имеющей распределение Фишера, имеют вид:
, если
,
, если
.
- Если
, то
. - Распределение Фишера сходится к единице. Доказательство:
если
, то
по распределению при
, где
— дельта-функция в единице, то есть распределение случайной величины-константы
.
- Если
, то случайные величины
сходятся по распределению к
при
.
- ↑ Johnson N. L., Kotz S., Balakrishnan N. Continuous Univariate Distributions, Volume 2 (Second Edition, Section 27).. — Wiley, 1995. — ISBN 0-471-58494-0.
 |
---|
Дискретные | |
---|
Абсолютно непрерывные | |
---|