Диффеоморфизм

Из Википедии, бесплатной энциклопедии

Образ квадрата прямоугольной сетки при некотором диффеоморфизме этого квадрата в себя.

Диффеоморфизм — отображение определённого типа между гладкими многообразиями.

Определение[править | править код]

Диффеоморфизм — взаимно однозначное и гладкое отображение гладкого многообразия в гладкое многообразие , обратное к которому тоже является гладким.

Обычно под гладкостью понимается -гладкость, однако таким же образом могут быть определены диффеоморфизмы с другим типом гладкости, в частности, класса при любом натуральном .

Примеры[править | править код]

Простейшими примерами диффеоморфизмов являются невырожденные линейные (аффинные) преобразования векторных (соответственно, аффинных) пространств одинаковой размерности.

Связанные определения[править | править код]

  • Если для и существует диффеоморфизм , то говорят, что и диффеоморфны.
    • Обычно это отношение обозначается .
    • Заметим, что диффеоморфными могут быть только многообразия одинаковой размерности.
  • Множество диффеоморфизмов многообразия в себя образует группу, называемую группой диффеоморфизмов и обозначаемую .
  • Отображение называется локальным диффеоморфизмом в точке если его сужение на некоторую окрестность точки является диффеоморфизмом на некоторую окрестность точки .

Свойства[править | править код]

  • Любой диффеоморфизм является гомеоморфизмом.
    • Обратное неверно. Более того, существуют гомеоморфные, но не диффеоморфные гладкие многообразия (например, экзотическая сфера).
  • Взаимно однозначное отображение является диффеоморфизмом тогда и только тогда, когда  — гладкое отображение и его якобиан нигде не равен нулю.

См. также[править | править код]

Литература[править | править код]

  • Зорич В. А. Математический анализ. — М.: Физматлит, 1984. — 544 с.
  • Милнор Дж., Уоллес А. Дифференциальная топология (начальный курс), — Любое издание.
  • Хирш М. Дифференциальная топология, — Любое издание.
  • Спивак М. Математический анализ на многообразиях. — М.: Мир, 1968.