헤론 평균 수학에서 음이 아닌 실수 A와 B의 헤론 평균 H는 다음과 같은 공식으로 얻을 수 있다. H = 1 3 ( A + A B + B ) . {\displaystyle H={\frac {1}{3}}\left(A+{\sqrt {AB}}+B\right).} 고대 수학자 헤론에서 이름이 유래했으며 각뿔대 또는 원뿔대의 부피를 구할 때 쓰인다. 각뿔대의 부피는 두 밑면의 넓이의 헤론 평균과 높이의 곱과 같다. 두 수 A, B의 헤론 평균은 그 산술 평균과 기하 평균의 가중치 평균이다. H = 2 3 ⋅ A + B 2 + 1 3 ⋅ A B . {\displaystyle H={\frac {2}{3}}\cdot {\frac {A+B}{2}}+{\frac {1}{3}}\cdot {\sqrt {AB}}.} 외부 링크[편집] Mean-Trapezoids 여러 평균들의 기하학적 의미 이 글은 수학에 관한 토막글입니다. 여러분의 지식으로 알차게 문서를 완성해 갑시다.