複電圧車

複電圧車(ふくでんあつしゃ)あるいは複電圧電気車[1]複電圧電車[1]とは、電化区間において異なる複数の電圧に対応することができる鉄道車両電気機関車電車)のことである。

直流用電車・交流用電車のいずれにも存在する。なお、直流電化区間と交流電化区間を直通できる車両の場合は、交直流電車(交流直流両用車両)となる。電圧も変化するので広義には複電圧車にあたるが、この項目では触れない。

また、交流車両の場合、電圧以外に周波数も途中で変更される場合があり、この相互の区間を直通する車両は複周波数電気車となる。

概要[編集]

製造目的としては、異電圧区間を直通運転する場合と、ある線区で電圧を昇圧する計画がある際に現用車で電圧切り替えに一斉に対応できるようにする場合がある。

基本的には、異電圧間セクションで車上スイッチにより、それぞれの電圧に対応できるよう回路を切り替える構造になっている。技術的にはさほど複雑ではなく、日本でも太平洋戦争前より存在した。

ヨーロッパの場合、国ごとに電化方式が異なる上に、国際列車の運転が多いため、TGVユーロスターICEなど高速鉄道の列車でも切り替え設備を搭載しているものが多い。

直流の複電圧車[編集]

抵抗制御界磁チョッパ制御界磁添加励磁制御も含む)が主流だった時代は、以下の手法がとられた。

  1. 主制御器の前段階で抵抗器を回路に組み込んでおき、供給電源の電圧にあわせてこれを短絡させることで主回路に流れる電圧を調整する。
  2. 主電動機の直並列を供給電源の電圧に合わせてつなぎ替え、主電動機の端子にかかる電圧を調整する。

前者の手法では、高い電圧の路線では、常に電力の一部を抵抗器で熱に変えてしまっており、運用効率が悪い。後者の手法では、主電動機の直並列切替は元々電気車の制御に用いられる為、それを電圧切替に提供してしまうと、実質的に制御段数が減ることになり、加速時の進段ショックの増大、主電動機の過熱につながる。

電機子チョッパ制御等、半導体による連続制御が可能になると、抵抗や回路のつなぎ替えに頼らず、効率的に対応電圧を切り替えることが可能となった。しかし、大容量の半導体を用いる為、車両が高額になるという欠点があった。

20世紀末以降、VVVFインバータ制御が主流になると、制御器そのものが複数の電圧に対応できるようになり、単一電圧車両とさほど変わらない効率が実現可能になった。

交流の複電圧車[編集]

交流の場合、変圧器による電圧変換が可能なため、直流のそれに比べて複電圧とすることが容易い。特に、交流電化の主流が15kV - 25kVの特高圧であるため、もともと車両側で降圧するための変圧器を搭載している。複電圧にする場合、一次巻線に中間端子を設け、電圧にあわせて切り替えることで、二次巻線側の電圧を同一にできる。これにより、単一電圧車に対してそれほどの効率悪化、重量増を伴わずに複電圧車とすることが可能である。

日本における実例[編集]

2016年現在、日本の鉄道において複電圧車が電圧切替機能を活かして直通運転に使用されているのは、下記の例のみである。昇圧対応で複電圧車を使用した例は、車両数の多い大手私鉄を中心に相当数の例がある。なお、低電圧区間が短距離である場合は、車両側に必要最小限のみの対応をして直通した例もある。例えば1956年までの近鉄大阪線上本町駅(現・大阪上本町駅) - 布施駅間、1969年までの阪急京都本線梅田駅(現・大阪梅田駅) - 十三駅間など。下記の国鉄80系電車もその一例である。2021年現在でも伊予鉄道(鉄道線)の車両は、750 Vの横河原線郡中線と600 Vの高浜線の両方で使用されているが、通常は複電圧車としては扱われない。

異電圧区間直通用[編集]

現行
過去の例

昇圧に対応するためのもの[編集]

下記はいずれも直流600 V→1,500 V。ただし多くの例では直通用のように自動、あるいは運転席のスイッチで切替のできるものでなく、工場へ入場して回路のつなぎ換え等を行わなければならない。中には元の電圧に戻すことが事実上不可能なものも含まれる。

直流600V→750V

ヨーロッパにおける実例[編集]

ヨーロッパの電化方式のおおまかな範囲はこのようになる
  直流750V
  直流1,500V
  直流3,000V
  交流15,000V
  交流25,000V
  非電化

ヨーロッパにおける複電圧車としては、以下の事例がある。

脚注[編集]

  1. ^ a b 日本工業規格(JIS)E 4001:2011「鉄道車両−用語」4.2.1.5 11504。
  2. ^ 京浜急行電鉄株式会社社史編集班『京浜急行八十年史』1980年、428頁
  3. ^ 中期経営計画「東京メトロプラン2018」 (PDF)

関連項目[編集]