Teorema del rango

Il teorema di nullità più rango.

In algebra lineare, il teorema del rango, detto anche teorema di nullità più rango, o teorema della dimensione, afferma che la somma tra la dimensione dell'immagine e la dimensione del nucleo di una trasformazione lineare è uguale alla dimensione del dominio di tale trasformazione lineare; equivalentemente, la somma del rango e della nullità di una matrice è uguale al numero di colonne della matrice.

Enunciato[modifica | modifica wikitesto]

Il teorema vale nel contesto delle trasformazioni lineari fra spazi vettoriali, con l'ipotesi che lo spazio vettoriale di partenza abbia dimensione finita.

Data una applicazione lineare fra spazi vettoriali:

il teorema stabilisce che vale la relazione:[1]

dove e sono rispettivamente l'immagine e il nucleo di e è la dimensione di .

In modo equivalente, se è una matrice allora:

Dove indica il rango di e indica la nullità di , cioè la , o indice di nullità.

L'equivalenza degli enunciati deriva dal fatto che ogni applicazione lineare , con campo arbitrario, può essere scritta, passando in coordinate rispetto a due basi fissate, nel seguente modo: [2]

dove è la matrice di trasformazione associata ad rispetto a due date basi dei due spazi vettoriali.

Il nucleo di è lo spazio delle soluzioni del sistema di equazioni lineari omogeneo associato alla matrice , mentre l'immagine è lo spazio generato dalle sue colonne .[3]

Dimostrazione[modifica | modifica wikitesto]

Poiché ha dimensione finita, il sottospazio vettoriale ha anch'esso dimensione finita. Il nucleo ha quindi una base:

Per il teorema della base incompleta esistono tali che:

sia una base di . Per concludere è sufficiente mostrare che i vettori:

formano una base di . L'immagine è generata dai vettori:

I primi vettori sono però nulli (per definizione di Ker), quindi l'immagine è generata dagli ultimi vettori:

Resta quindi da verificare l'indipendenza lineare di questi vettori. Si suppone quindi data una combinazione lineare nulla:

Per linearità si ottiene:

Quindi:

Poiché questo vettore sta nel nucleo, è esprimibile come combinazione lineare dei vettori :

In altre parole:

Poiché è una base di , tutti i coefficienti qui presenti sono nulli. In particolare, per ogni .

Quindi i vettori sono effettivamente indipendenti. L'immagine ha quindi dimensione . Pertanto:

Dimostrazione con il teorema di isomorfismo[modifica | modifica wikitesto]

Il teorema del rango può essere visto come corollario al primo teorema di isomorfismo:

dove è un omomorfismo di gruppi (in particolare, di spazi vettoriali) che agisce su . Si ha infatti:

che è l'asserto del teorema.

Applicazioni lineari iniettive - suriettive - biunivoche[modifica | modifica wikitesto]

Data un'applicazione lineare con e essa è:

  • iniettiva se e solo se
  • suriettiva se e solo se
  • biiettiva se e sono verificate entrambe le precedenti condizioni.

Ne segue quindi che, se , l'applicazione lineare è iniettiva se e solo se è suriettiva.

Inoltre, in base alle dimensioni e , si ha che:

  • se l'applicazione lineare non sarà mai iniettiva, poiché
  • se l'applicazione lineare non sarà mai suriettiva, poiché

Caso di dimensione infinita[modifica | modifica wikitesto]

Supponiamo il caso particolare in cui l'applicazione lineare è un endomorfismo, cioè una applicazione lineare dallo spazio in sé stesso. La relazione appena dimostrata:

dice che l'iniettività e la suriettività dell'applicazione si implicano a vicenda.

Nel caso infinito questo cessa di essere vero. Ad esempio, considerando:

come spazio vettoriale su e l'applicazione che agisce "spostando" in avanti le coordinate e mettendo lo zero in prima posizione, cioè:

è immediato mostrare che tale applicazione è lineare e iniettiva, ma banalmente non suriettiva.

Riformulazioni e generalizzazioni[modifica | modifica wikitesto]

In linguaggio più moderno, il teorema può essere espresso nel seguente modo. Se:

è una successione esatta corta di spazi vettoriali, allora:

Qui gioca il ruolo di e è .

Nel caso finito-dimensionale questa formulazione è suscettibile di generalizzazione. Se:

è una successione esatta di spazi vettoriali a dimensioni finite, allora:

Il teorema del rango per gli spazi vettoriali di dimensione finita può anche essere formulato in termini degli indici di una mappa lineare. L'indice di una mappa lineare , dove e sono di dimensione finita, è definito da:

Intuitivamente, è il numero di soluzioni indipendenti dell'equazione , e è il numero di restrizioni indipendenti che devono essere poste su per rendere risolvibile. Il teorema del rango per gli spazi vettoriali di dimensione finita è equivalente all'espressione:

Si vede che possiamo facilmente leggere l'indice della mappa lineare dagli spazi coinvolti, senza la necessità di esaminare in dettaglio. Questo effetto si trova anche in un risultato molto più profondo: il teorema dell'indice di Atiyah-Singer afferma che l'indice di determinati operatori differenziali può essere letto dalla geometria degli spazi coinvolti.

Note[modifica | modifica wikitesto]

  1. ^ Serge Lang, Algebra lineare, Bollati Boringhieri, 1970, p. 92, ISBN 88-339-5035-2, OCLC 797168806. URL consultato l'8 gennaio 2022.
  2. ^ Serge Lang, Algebra lineare, Bollati Boringhieri, 1970, p. 105, ISBN 88-339-5035-2, OCLC 797168806. URL consultato l'8 gennaio 2022.
  3. ^ Serge Lang, Algebra lineare, Bollati Boringhieri, 1970, p. 176, ISBN 88-339-5035-2, OCLC 797168806. URL consultato l'8 gennaio 2022.

Bibliografia[modifica | modifica wikitesto]

Voci correlate[modifica | modifica wikitesto]

Collegamenti esterni[modifica | modifica wikitesto]

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica