Mètre

Wikipedia open wikipedia design.

Mètre
Sceau du Bureau international des poids et mesures
Sceau du Bureau international des poids et mesures
Informations
Système Unités de base du Système international
Unité de… Longueur
Symbole m
Conversions
1 m en... est égal à...
  Unités US   ≈3,280 84 pieds (1 ft = 30,48 cm)
     ≈39,3701 pouces (1 po = 2,54 cm)

Le mètre, de symbole m, est l'unité de longueur du Système international (SI). C'est l'une de ses sept unités de base, à partir desquelles sont construites les unités dérivées (les unités SI de toutes les autres grandeurs physiques).

Première unité de mesure du système métrique initial, le mètre (du grec μέτρον / métron, « mesure »[1]) a d'abord été défini comme la 10 000 000e partie d'une moitié de méridien terrestre[a], puis comme la longueur d'un mètre étalon international, puis comme un multiple d'une certaine longueur d'onde et enfin, depuis 1983, comme « la longueur du trajet parcouru par la lumière dans le vide pendant une durée d'un 299 792 458e de seconde »[2].

Historique[modifier | modifier le code]

« Nous fixons l'unité de mesure à la dix-millionième partie du quart du méridien et nous la nommons mètre ». Le , dans leur rapport à l'Académie des Sciences sur la nomenclature des mesures linéaires et superficielles[3], Borda, Lagrange, Condorcet et Laplace, définissent pour la première fois ce qui deviendra près d'un siècle plus tard l'unité de mesure internationale de référence des longueurs.

Le mot « mètre » était déjà utilisé dans la langue française depuis plus d'un siècle dans des mots composés comme thermomètre (1624, Leurechon[4]) ou baromètre (1666)[5].

Lois et décrets révolutionnaires[modifier | modifier le code]

Le , l'Assemblée Nationale, sur la demande de Talleyrand et au vu du rapport de l'Académie des sciences[6], avait voté l'exécution de la mesure d'un arc de méridien de Dunkerque à Barcelone pour donner une base objective à la nouvelle unité de mesure.

Le mètre en marbre de la rue Vaugirard à Paris (1796)

Les opérations de mesure du méridien entamées en 1792 par Delambre et Méchain n'étant pas encore achevées, en 1793, un premier mètre provisoire doit être adopté. Fondé sur les calculs du méridien par Nicolas-Louis de Lacaillle en 1758 et d'une longueur de 3 pieds 11 lignes 44 centièmes, soit 443,44 lignes de la Toise de Paris[7], ce mètre provisoire est proposé en par Borda, Lagrange, Condorcet et Laplace[8] et adopté par décret le par la Convention[9].

Avec le décret du 18 Germinal an III ()[10], la Convention institue le système métrique décimal et poursuit les mesures du méridien terrestre qui avaient été interrompues fin 1793 par le Comité de Salut public.

Le 4 messidor an 7 (), un mètre-étalon en platine[11] conforme aux nouveaux calculs du méridien est déposé aux Archives de l'Empire et un autre à l'Observatoire Impérial.

La loi du 19 frimaire an VIII ()[12] édictée au début du Consulat, institue le mètre définitif. Le mètre provisoire fixé dans les lois du et du 18 germinal an III est révoqué. Il est remplacé par le mètre définitif, dont la longueur fixée par les mesures du méridien par Delambre et Méchain est de 3 pieds 11 lignes 296 millièmes[13].

L'adoption du mètre[modifier | modifier le code]

La République helvétique adopte le système métrique en 1803, peu avant son effondrement. Le , Ferdinand Rudolph Hassler soumet sa candidature à la réalisation du relevé côtier des États-Unis, où il avait amené une copie du mètre des Archives en 1805[14],[15],[16],[17].

Les Pays-Bas adoptent le mètre à partir de 1816, premier pays à établir durablement le système métrique, suivi par la Grèce en 1836[14].

En 1832, Carl Friedrich Gauss qui effectue des travaux sur le champ magnétique terrestre propose d'ajouter la seconde aux unités fondamentales que sont le mètre et le kilogramme sous la forme du système CGS (centimètre, gramme, seconde)[18],[19].

La loi du [20] interdit en France à partir de 1840 tous poids et mesures autres que ceux établis par les lois du 18 germinal an III () et du 19 frimaire an VIII () constitutives du système métrique décimal.

Le , le Congrès des États-Unis autorise l'utilisation du système métrique sur tout le territoire des États-Unis[21],[22].

En 1889, la première Conférence générale des poids et mesures (CGPM) redéfinit le mètre comme étant la distance entre deux points sur une barre d'un alliage de 90% de platine et 10% d'iridium. Le mètre étalon est une barre en "X" de 20 x 20 mm de côté et 102 cm de long. Les graduations donnent la longueur du mètre avec une précision de 10 puissance -7, soit une degré de précision trois fois plus grand que celui du mètre des archives de 1799[23]. Cette barre étalon est conservée au BIPM à Sèvres en France. Trente copies numérotées sont fabriquées et envoyées aux différents pays membres. Cela implique la mise au point d'un appareillage spécial permettant la comparaison des nouveaux étalons entre eux et avec le Mètre des Archives et la définition d'une échelle de température reproductible. Ces travaux donneront lieu à l'invention de l'invar qui vaudra à Charles-Édouard Guillaume, directeur du Bureau international des poids et mesures le prix Nobel de physique en 1920[24].

Les mètres dématérialisés[modifier | modifier le code]

En 1960, la 11e Conférence générale des poids et mesures (CGPM)[25] abroge la définition du mètre en vigueur depuis 1889, fondée sur le prototype international en platine iridié. Elle définit le mètre, unité de longueur du Système international (SI), comme égal à 1 650 763,73 longueurs d'onde dans le vide de la radiation correspondant à la transition entre les niveaux 2p10 et 5d5 de l'atome de krypton 86.

En 1983, la définition du mètre fondée sur l'atome de krypton 86 en vigueur depuis 1960 est abrogée. Le mètre, unité de longueur du SI, est défini par la 17e CGPM[26] comme étant la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde.

A compter du , la définition du mètre adoptée à la 26e réunion de la CGPM[27] de est : « Le mètre, symbole m, est l'unité de longueur du SI. Il est défini en prenant la valeur numérique fixée de la vitesse de la lumière dans le vide, c, égale à 299 792 458 lorsqu'elle est exprimée en m s–1, la seconde étant définie en fonction de ΔνCs ». Dans cette définition, ΔνCs est la fréquence de la transition hyperfine de l’état fondamental de l’atome de césium 133 non perturbé égale à 9 192 631 770 Hz .

La détermination de la longueur du mètre[modifier | modifier le code]

Le , l'Assemblée nationale constituante se prononce pour la création d'un système de mesure stable, uniforme et simple. Le , Condorcet met sur pied une commission, comprenant, outre lui-même, Jean-Charles de Borda, Coulomb, Joseph Louis de Lagrange, Laplace, Lavoisier et Tillet. La commission étudie trois possibilités de mesure :

  • la longueur du pendule battant la seconde à la latitude de 45°
  • une fraction du quart du cercle équatorial,
  • une fraction du quart du méridien terrestre

Elle rend son rapport en . La mesure au pendule est abandonnée d'une part à cause des variations de la gravitation terrestre, d'autre part à cause de l'interférence du facteur temps dans la détermination de l’unité de longueur avec le pendule.

Le , sur la proposition de Borda - l'inventeur du pendule et du "cercle répétiteur" qui portent son nom - une commission chargée de fixer la base de l'unité des mesures est constituée. La commission est composée de Borda, Condorcet, Laplace, Lagrange et Monge. Des appareils de mesure géodésique précis et fiables sont nécessaires comme la règle pour les longueurs et le cercle répétiteur pour les angles, avec une précision d'une seconde d'arc, dont Borda est l'inventeur avec Etienne Lenoir.

La mesure du cercle équatorial n'est pas retenue. C'est la grandeur du quart du méridien terrestre qui servira de base au nouveau système de mesure. Le rapport final sur le choix d’une unité de mesure présenté le par Condorcet à l’Académie propose que l’unité de longueur, baptisée "mètre", soit égale à la dix millionième partie du quart du méridien terrestre. Il propose que l’on ne mesure pas le quart de méridien tout entier, mais seulement, sur le 45° parallèle et au niveau de la mer, l'arc de neuf degrés et demi qui sépare Dunkerque de Barcelone.

Les précurseurs[modifier | modifier le code]

Alors que Galilée affirmait l'isochronisme des pendules, Huygens[28] trouve que la période du pendule dépend de l’amplitude de son mouvement pour les grandes oscillations. S'inspirant des recherches de Christopher Wren sur le cycloïde, il munit ses pendules d'arc cycloïdaux qui garantissent l'isochronisme des vibrations en rendant la période indépendante de l’amplitude[29]. Huygens détermine la longueur du pendule qui bat la seconde à 3 pieds, 3 pouces et 3/10 d’un pouce d’Angleterre. En 1659, Huygens introduit un paramètre supplémentaire dans le calcul de la période d'un pendule, la pesanteur, dont le pendule devient aussi un instrument de mesure[30].

En 1668, le philosophe anglais John Wilkins propose une mesure universelle à unités décimales fondée sur une corrélation entre la longitude et une mesure du temps d'une seconde au pendule. Sa longueur fondamentale était de 38 pouces de Prusse soit de 993,7 mm (1 pouce de Prusse étant égal à 26,15 mm)[31].

En 1670 Gabriel Mouton propose un système de mesure décimal utilisant comme unité de mesure une fraction de la circonférence terrestre plutôt que la longueur d'un pendule ou les mesures du corps humain. Sa « virgula geometrica » avait comme longueur la six-cent-millième partie d'un degré d'un arc de méridien (environ 0,18m). Son multiple, la « virga » avait environ la taille de la toise (1,80m)[32].

En 1670, Jean Picard fait des mesures identiques de 440 lignes 1/2 d'un pendule battant la seconde à l’île de Heune, Lyon, Bayonne et Sète. En 1671, dans son livre Mesure de la terre, il propose d'abandonner les étalons de mesure matériels comme la toise pour se référer à un original invariable et universel issu de la nature et prouvé par calcul. Il préconise une unité de longueur universelle, le « Rayon astronomique », à savoir la longueur d'un pendule à secondes[33].

Mais en 1672, Jean Richer observe à Cayenne, soit à 4 à 5 degrés de l'équateur, qu'un pendule qui bat les secondes y est plus court qu'à Paris d'une ligne et un quart. L'observation est reprise pas Huygens pour qui, si la pesanteur varie en fonction de la latitude, l'étalon de longueur défini par Picard ne peut pas être universel.

En 1675, le savant italien Tito Livio Burattini publie Misura Universale, ouvrage dans lequel il renomme la mesure universelle de Wilkins en mètre universel « metro cattolico » et la redéfinit comme étant la longueur d'un pendule qui oscille avec une demi-période d'une seconde, soit environ 993,9 mm actuels.

En 1735 M. de Mairan trouve à 1/90 près, la même mesure que Picard, soit 440 lignes 17/30[34]. En 1747, La Condamine présente à l'Académie des Sciences un Nouveau projet d'une mesure invariable propre à servir de mesure commune à toutes les nations. Constatant que la longueur de la demi-toise est presque la même, à sept lignes près, que celle du pendule qui bat la seconde à l'équateur, il propose d'adopter la longueur du pendule comme demi-toise, le changement étant à peine sensible dans l'usage ordinaire selon lui [35].

En 1780, le mathématicien Alexis-Jean-Pierre Paucton publie une Métrologie ou Traité des mesures, poids et monnaies. Au sein d'un système décimal, il détermine une unité de mesure comme 400 000 ème partie d'un degré de méridien et la baptise « métrétes linéaire » en adaptant à la mesure des longueurs le nom d'une unité de mesure grecque et romaine des volumes de liquides[36].

La géodésie comme base du premier mètre[modifier | modifier le code]

L'étude de la Terre précède la physique et contribuera à l'élaboration des ses méthodes. Celle-ci n'est alors qu'une philosophie naturelle dont l'objet est l'observation de phénomènes comme le champ magnétique terrestre, la foudre et la pesanteur[37]. De plus, la détermination de la figure de la Terre constitue à son origine un problème de la plus haute importance en astronomie, dans la mesure où le diamètre de la Terre est l'unité à laquelle toutes les distances célestes doivent être référées[38].

Les mesures de l'arc de méridien sous l'Ancien Régime[modifier | modifier le code]

En 1667 sous Louis XIV, l’Académie des Sciences conçoit l’idée d’un méridien de départ des longitudes qui passerait au centre des bâtiments du futur observatoire. L'Observatoire royal est situé en dehors de Paris pour faciliter les observations astronomiques. Les académiciens fixent son orientation nord–sud et établissent son axe de symétrie par observation du passage du Soleil pour devenir le méridien de référence pour la France. Pour mesurer une partie du méridien, la méthode utilisée depuis la Renaissance, est celle de la triangulation. Au lieu de mesurer des milliers de kilomètres, on mesure les angles d’une suite de triangles adjacents. La longueur d’un seul côté d’un seul triangle, que les arpenteurs appellent "base", permet de connaître toutes les longueurs de tous les triangles. Des opérations géométriques permettent ensuite de déterminer la longueur du méridien[39].

En 1669, Jean Picard mesure le premier le rayon terrestre par triangulation. L’arc de méridien de 1°, 11’ et 57”, choisi entre Sourdon et Malvoisine, mesure 68,430 toises de Paris soit 135Km. Rapportée à un degré, cette mesure permet d’établir la longueur d’un méridien par l’abbé Picard pour qui «cette mesure, prise 360 fois donnerait la circonférence entière d’un méridien terrestre». Dans son mémoire du à Colbert sur la cartographie de la France, Picard propose une mesure sur toute la France de la méridienne de l'Observatoire. Cette mesure devait servir à la fois à mesurer plus exactement la circonférence de la terre qu'à établir une plus juste de la France[40]. Au lieu de cartographier les provinces et assembler ensuite les différentes cartes, Picard propose un châssis général de triangulation de la France qu'on remplirait ensuite avec des cartes plus détaillées. Pour construire ce châssis, Picard propose de reprendre la voie du méridien qu'il avait commencé à mesurer et de mesurer l'axe Dunkerque-Perpignan passant par Paris. Picard meurt l'année suivante, fin 1682.

Jean-Dominique Cassini reprend le projet en 1683 et se lance dans les mesures de la méridienne entre Dunkerque et Collioure. Mais Colbert meurt en et Louvois, qui lui succède, arrête les travaux de mesure de Cassini. Il meurt à son tour en 1691. Cassini reprend ses travaux en 1700-1701 sans pouvoir les achever. Son fils Jacques Cassini (Cassini II), effectuera cette mesure entre 1713 et 1718. La mesure de l'arc porte sur une distance cinq fois plus longue que celle effectuée par l’abbé Picard, elle est plus précise et sera provisoirement retenue en 1795 par la Convention pour la définition du mètre, la dix millionième partie du quart du méridien terrestre.

Dans ses Principia de 1687, Newton affirme que la Terre est aplatie aux pôles de 1/230. En 1690, à cause de sa conception différente de la gravité, Huygens trouve un aplatissement de 1/578 seulement, plus faible que celui de Newton[41]. Pour vérifier ces théories, l'Académie des Sciences de Paris envoie, sur ordre du roi, deux expéditions géodésiques, l'une au Pérou en 1735-1744 avec La Condamine, Bouguer, Godin et Jussieu[42], et l'autre en Laponie en 1736-1737 avec Maupertuis, Celsius, et Clairaut. La mesure de longueurs d'arcs de méridien à des latitudes différentes doit permettre de déterminer la forme de la Terre. Les mesures de Maupertuis donnent un aplatissement de 1/178, proche de la valeur donnée par Newton et validant, un demi-siècle après la loi de la gravitation, le système newtonien de l'attraction universelle[43].

En 1739, César-François Cassini de Thury (Cassini III) effectue une nouvelle mesure du méridien de Paris[44] permettant la mise à jour des cartes de France et d'Europe. En 1784, il établit par triangulation, une carte précise de la France[45].

Les mesures de la Méridienne de Paris par Delambre et Méchain[modifier | modifier le code]

Dans son célèbre ouvrage « Théorie de la Figure de la Terre, Tirée des Principes de l'Hydrostatique » publié en 1743, Alexis Claude Clairaut (17131765) fait une synthèse des rapports existant entre la pesanteur et la forme de la Terre. Clairaut y expose son théorème qui établit une relation entre la pesanteur mesurée à différentes latitudes et l'aplatissement de la Terre considérée comme un sphéroïde composé de couches concentriques de densités variables[46],[47]. Vers la fin du XVIIIe siècle, les géodésiens cherchent à concilier les valeurs de l'aplatissement tirées des mesures d'arcs méridiens avec celui que donne le sphéroïde de Clairaut tiré de la mesure de la pesanteur[48]. En 1789, Pierre-Simon de Laplace obtient par un calcul prenant en compte les mesures d'arcs méridiens connues à l'époque un aplatissement de 1/279. La gravimétrie lui donne un aplatissement de 1/359. Adrien-Marie Legendre quant à lui trouve à la même époque un aplatissement de 1/305. La Commission des Poids et Mesures adoptera en 1799 un aplatissement de 1/334 en combinant l'arc du Pérou et les données de la méridienne de Delambre et Méchain[48].

Le , un projet de décret inspiré par Lagrange, Borda, Laplace, Monge et Gondorcet est proposé par Talleyrand. Celui-ci prévoit la mesure d'un arc de méridien de Dunkerque à Barcelone. Six commissaires doivent être nommés à l'Académie des Science pour mener à bien le projet. L'Assemblée adopte ce principe de la grandeur du quart du méridien terrestre comme base du nouveau système de mesures qui sera décimal. Elle mandate la mesure d'un arc de méridien depuis Dunkerque jusqu'à Barcelone.

Cercle répétiteur de Borda, utilisé pour la mesure de la méridienne

En commence la fabrication des cercles répétiteurs de Borda et Lenoir. A la fin du mois de , les deux commissaires Jean-Baptiste Joseph Delambre et Pierre Méchain et leurs opérateurs commencent la mesure du méridien. Elle est divisé en deux zones avec une jonction à Rodez : la partie Nord, de Dunkerque à Rodez était mesurée par Delambre et la partie sud, en remontant de Barcelone à Rodez, par Méchain. Pour les mesures de longueurs des bases des triangles, Delambre et Méchain utilisent les règles de Borda mises au point par Etienne Lenoir. En laiton et en platine, elles sont ajustées sur une toise et mesurent 12 pieds (environ 4m). Pour mesurer les angles, c'est le cercle répétiteur mis au point par Borda et Étienne Lenoir en 1784 qui est utilisé. On mesure la longueur d’un côté du triangle reposant sur un terrain plat, puis on établit par visées les mesures des angles du triangle pour obtenir par des calculs trigonométriques la longueur de tous les côtés du triangle et par projection la distance réelle. La détermination des positions (longitude et latitude) des extrémités du segment de méridien est faite par une mesure astronomique[49]. Le , un rapport de l'Académie des sciences à la Convention Nationale donne l'état des travaux en cours[50].

À cause des conditions politiques, le travail de mesure du méridien sera retardé et exécuté en deux temps de 1792 à 1793 et de 1795 à 1798. En , le Comité de Salut Public souhaitant en effet « donner le plus tôt possible l'usage des nouvelles mesures à tous les citoyens en profitant de l'impulsion révolutionnaire », la Convention nationale avait émis un décret instaurant un mètre fondé sur les anciens résultats des mesures de La Condamine en 1735 au Pérou, Maupertuis en 1736 en Laponie et Cassini en 1740 de Dunkerque à Perpignan.

Les opérations de mesure du méridien de Delambre et Méchain sont suspendues fin 1793 par le Comité de Salut public. Celui-ci ne voulant donner de fonctions qu'à des hommes « dignes de confiance par leurs vertus républicaines et leur haine du roi », le (3 nivose an 2), Borda, Lavoisier, Laplace et Delambre sont exclus de la Commission des poids et mesures[51]. Condorcet, secrétaire de l'Académie Royale des sciences et instigateur du nouveau système de mesure, est arrêté et meurt en prison le . Lavoisier est guillotiné le . Mais, à la faveur de la loi du 18 germinal an III () portée par Prieur de la Côte d'Or, Delambre et Méchain seront à nouveau nommés commissaires chargés des mesures de la méridienne et les travaux pourront reprendre et s'achèveront en 1798[52].

Le résultat des mesures de Delambre et Méchain est précis : 551 584,7 toises, avec une erreur remarquable de seulement 8 millionièmes. La longueur du quart de méridien calculée est alors égal à 5 130 740 toises et le mètre égal à 443,295936 lignes. La commission spéciale pour le quart du méridien et la longueur du mètre rédige son rapport le 6 floréal an 7 ()[53]. Le 4 messidor, l'Institut présente au corps législatif les étalons du mètre et du kilogramme en platine qui sont déposés aux Archives en exécution de l'article II de la loi du 18 germinal an 3 ().

Avec la loi du 19 frimaire an 8 () édictée sous le Consulat, la longueur du mètre provisoire ordonnée dans les lois du et du 18 germinal an III (3 pieds 11 lignes 44 centièmes) est remplacée par la longueur définitive fixée par les mesures du méridien par Delambre et Méchain. Elle est désormais de 3 pieds 11 lignes 296 millièmes. Le mètre en platine déposé le 4 Messidor précédent au Corps législatif par l’Institut national des Sciences et des Arts est confirmé et devient l'étalon de mesure définitif des mesures de longueur dans toute la République.

De la géodésie à la métrologie[modifier | modifier le code]

Le début du XIXe siècle est marqué par l'internationalisation de la géodésie[48]. L'unité de longueur dans laquelle sont mesurées toutes les distances du relevé côtier des États-Unis est le mètre français, dont une copie authentique est conservée dans les archives du Coast Survey Office. Il est la propriété de la Société philosophique américaine, à qui il a été offert par Ferdinand Rudolph Hassler, qui l'avait reçu de Johann Georg Tralles, délégué de la République helvétique au comité international chargé d'établir l'étalon du mètre par comparaison avec la toise, l'unité de longueur utilisée pour la mesure des arcs méridiens en France et au Pérou. Il possède toute l'authenticité de tout mètre d'origine existant, portant non seulement le cachet du Comité mais aussi la marque originale par laquelle il se démarquait des autres étalons lors de l'opération de normalisation. Il est désigné comme le Mètre des Archives[54],[55],[15].

Entre 1853 et 1855, le Gouvernement espagnol fait réaliser à Paris par Jean Brunner, un fabricant d'instruments de précision d'origine suisse, une règle géodésique calibrée sur le mètre pour la carte d'Espagne. La traçabilité métrologique entre la toise et le mètre est assurée par la comparaison de la règle géodésique espagnole avec la règle numéro 1 de Borda qui sert de module de comparaison avec les autres étalons géodésiques (voir plus haut la section : les mesures de Delambre et Méchain)[56],[57],[58],[18]. Des copies de la règle espagnole sont effectuées pour la France et l'Allemagne. Ces étalons géodésiques seront employés pour les opérations les plus importantes de la géodésie européenne[59]. En effet, Louis Puissant avait déclaré le devant l'Académie des sciences que Delambre et Méchain avaient commis une erreur dans la mesure de la méridienne de France[60]. C'est pourquoi de 1861 à 1866, Antoine Yvon Villarceau vérifie les opérations géodésiques en huit points de la méridienne. Quelques-unes des erreurs dont étaient entachées les opérations de Delambre et Méchain sont alors corrigées. Entre 1870 et 1894, François Perrier, puis Jean-Antonin-Léon Bassot procèdent à la mesure de la nouvelle méridienne de France[61].

Pendule réversible de Repsold-Bessel

Friedrich Wilhelm Bessel est à l'origine des investigations effectuées au XIXe siècle sur la figure de la Terre au moyen de la détermination de l'intensité de la pesanteur par le pendule et de l'utilisation du théorème de Clairaut. Les études qu'il conduit de 1825 à 1828 et sa détermination de la longueur du pendule simple battant la seconde à Berlin sept ans plus tard marquent le début d'une nouvelle ère de la géodésie[62]. En effet, le pendule réversible tel qu'il est utilisé par les géodésiens à la fin du XIXe siècle est en grande partie dû aux travaux de Bessel, car ni Johann Gottlieb Friedrich von Bohnenberger, son inventeur, ni Kater qui l'utilise dès 1818 ne lui apportent les perfectionnements qui résulteront des précieuses indications de Bessel, et qui le convertiront en l'un des plus admirables instruments qu'il sera donné aux scientifiques du XIXe siècle d'employer[62]. De plus, la coordination de l'observation des phénomènes géophysiques dans différents points du globe revêt une importance primordiale et est à l'origine de la création des premières associations scientifiques internationales. Carl Friedrich Gauss, Alexander von Humbolt et Wilhelm Eduard Weber créent le Magnetischer Verein en 1836. La création de cette association est suivie par la fondation de l'Association géodésique internationale pour la mesure des degrés en Europe centrale en 1863 à l'initiative du général Johann Jacob Baeyer[37]. Le pendule réversible construit par les frères Repsold est utilisé en Suisse dès 1865 par Émile Plantamour pour la mesure de la pesanteur dans six stations du réseau géodésique helvétique. Suivant l'exemple donné par ce pays et sous le patronage de l'Association géodésique internationale, l'Autriche, la Bavière, la Prusse, la Russie et la Saxe entreprennent des déterminations de la pesanteur sur leurs territoires respectifs[62].

Le Prototype international du mètre constituera la base du nouveau système international d'unités, mais il n'aura plus aucune relation avec les dimensions de la Terre que les géodésiens s'efforcent de déterminer au XIXe siècle. Il ne sera plus que la représentation matérielle de l'unité du système. Si la métrologie de précision a profité des progrès de la géodésie, celle-ci ne peut continuer à prospérer sans le concours de la métrologie. En effet, toutes les mesures d'arcs terrestres et toutes les déterminations de la pesanteur par le pendule doivent impérativement être exprimées dans une unité commune. La métrologie se doit donc de créer une unité adoptée et respectée par toutes les nations de façon à pouvoir comparer avec la plus grande précision toutes les règles ainsi que tous les battants des pendules employés par les géodésiens. Ceci de manière à pouvoir combiner les travaux effectués dans les différentes nations afin de mesurer la Terre[62].

Les organismes internationaux[modifier | modifier le code]

En 1866, Carlos Ibáñez e Ibáñez de Ibero offre à la Commission permanente de l'Association géodésique réunie à Neuchâtel deux de ses ouvrages traduits en français par Aimé Laussedat. Il s'agit des rapports des comparaisons de deux règles géodésiques construites pour l'Espagne et l'Egypte, calibrées sur le mètre, entre elles et avec la règle N° 1 de la double-toise de Borda qui sert de module de comparaison avec les autres étalons géodésiques et est alors la référence pour la mesure de toute les bases géodésiques en France. À la suite de l'adhésion de l'Espagne et du Portugal, l'Association géodésique deviendra l'Association géodésique internationale pour la mesure des degrés en Europe. Le général Johann Jacob Baeyer, Adolphe Hirsch et Carlos Ibáñez e Ibáñez de Ibero étant tombés d'accord, ils décident, pour rendre comparables toutes les unités, de proposer à l'Association de choisir le mètre pour unité géodésique, de créer un Mètre prototype international différant aussi peu que possible du Mètre des Archives, de doter tous les pays d'étalons identiques et de déterminer de la manière la plus exacte les équations de tous les étalons employés en géodésie, par rapport à ce prototype ; enfin, pour réaliser ces résolutions de principe, de prier les gouvernements de réunir à Paris une Commission internationale du Mètre[63],[58],[64],[18],[65],[66],[67],[68].

L'année suivante la seconde Conférence générale de l'Association géodésique internationale pour la mesure des degrés en Europe réunie à Berlin recommande de construire un nouveau mètre prototype européen et de créer une commission internationale. Napoléon III crée par décret en 1869 une Commission internationale du mètre qui deviendra la Conférence générale des poids et mesure (CGPM) et lance des invitations aux pays étrangers. Vingt-six pays répondent favorablement. Cette Commission sera en effet convoquée en 1870 ; mais, forcée par la guerre franco-allemande de suspendre ses séances, elle ne pourra les reprendre utilement qu'en 1872[69],[70],[18],[68].

Lors de la séance du , Carlos Ibáñez e Ibáñez de Ibero est élu président du Comité permanent de la Commission internationale du mètre qui deviendra le Comité international des poids et mesures (CIPM)[71],[18]. La présidence du géodésien espagnol sera confirmée lors de la première séance du Comité international des poids et mesures, le [72]. Trois autres membres du Comité, Wilhelm Foerster, Heinrich von Wild et Adolphe Hirsch comptent également au nombre des principaux architectes de la Convention du Mètre[18],[68],[73],[74],[75],[76].

Prototype en platine irridié N°27 du mètre de 1889 attribué aux États-Unis d'Amérique.

Le , dix-sept états signent à Paris la Convention du Mètre[77] dans le but d'établir une autorité mondiale dans le domaine de la métrologie.

Dans ce but, trois structures sont créées. La Convention délègue ainsi à la Conférence générale des poids et mesures (CGPM), au Comité international des poids et mesures (CIPM) et au Bureau international des poids et mesures (BIPM) l'autorité pour agir dans le domaine de la métrologie, en assurant une harmonisation des définitions des différentes unités des grandeurs physiques. Ces travaux mènent à la création en 1960 du Système international d’unités (SI)[19].

La Convention est modifiée en 1921. En 2016, elle regroupait 58 États membres et 41 États associés à la conférence générale, comprenant la majorité des pays industrialisés.

Le Comité international des poids et mesures (CIPM) est composé de dix-huit personnes, chacune issue d'un État membre différent de la Convention. Sa fonction est de promouvoir l'usage d'unités de mesures uniformes et de soumettre des projets de résolution allant en ce sens à la CGPM. Pour ce faire, elle s'appuie sur les travaux de comités consultatifs.

La Conférence générale des poids et mesures (CGPM) est formée de délégués des États membres de la convention et se réunit tous les quatre ans en moyenne pour réviser les définitions des unités de base du Système international d’unités (SI) dont le mètre[78].

Le Bureau international des poids et mesures (BIPM), basé à Sèvres non loin de Paris, a pour charge, sous la surveillance du CIPM, la conservation des prototypes internationaux des étalons de mesure, ainsi que la comparaison et l'étalonnage de ceux-ci avec les prototypes nationaux. En France, le Laboratoire national de métrologie et d'essais (LNE) développe et maintient les étalons nationaux de référence, reconnus à l'international.

Conversions et repères[modifier | modifier le code]

Relation avec d'autres unités de mesures[modifier | modifier le code]

Il existe une relation entre l'unité de mesure (mètre), l'unité de masse (kilogramme), les unités de surface (mètre carré) et les unités de volume (mètre cube et litre, souvent utilisés pour désigner des volumes ou des quantités de liquides) :

  • un mètre carré (m2) est, par exemple, la surface d'un carré dont chaque côté mesure un mètre ;
  • un mètre cube (m3) est, par exemple, le volume d'un cube dont chaque arête mesure un mètre ;
  • à l'origine, le kilogramme fut défini comme la masse d'un décimètre cube (dm3) d'eau pure, avant d'être remplacé par un étalon en platine d’un kilogramme (voir : Historique du kilogramme).

Dans certains métiers (archives, terrassement, de construction, etc.), on parle de « mètre linéaire (noté : « ml »). Il s'agit d'un pléonasme, puisque le mètre désigne précisément une longueur de ligne et que la norme NF X 02-003[79] précise qu'on ne doit pas affecter les noms d'unités de qualificatifs qui devraient se rapporter à la grandeur correspondante. Par ailleurs, le symbole mℓ ou mL correspond dans le SI à millilitre, ce qui n'a rien à voir avec une longueur et est une source de confusion. Toutefois, dans ces métiers, l'adjectif « linéaire » est ajouté pour signifier « en ligne droite » ou « horizontalement ».

On emploie usuellement pour les gaz le normo mètre cube, anciennement noté « mètre cube normal », qui correspond au volume mesuré en mètres cubes dans des conditions normales de température et de pression. Cette unité n'est pas reconnue par le BIPM. Sa définition varie selon les pays et selon les professions qui l'utilisent.

En fait, et de façon générale, « le symbole de l’unité ne doit pas être utilisé pour fournir des informations spécifiques sur la grandeur en question et il ne doit jamais être la seule source d’information sur la grandeur. Les unités ne doivent jamais servir à fournir des informations complémentaires sur la nature de la grandeur ; ce type d’information doit être attaché au symbole de la grandeur et non à celui de l’unité[80]. » (ici le volume). On doit donc dire « volume mesuré en mètres cubes dans les conditions normales de température et de pression », abrégé en « volume normal en mètres cubes ». Tout comme : Ueff = 500 V et non U = 500 Veff (« tension efficace exprimée en volts » et non « volts efficaces »).

Correspondance avec d'autres unités de longueur[modifier | modifier le code]

Le mètre correspond à :

  • 5,399 568 × 10−4 milles marins ;
  • 6,215 04 × 10−4 miles terrestres ;
  • 1,056 97 × 10−16 années-lumière ;
  • environ 1,0936 yard (par définition le yard est égal à 0,9144 m) ;
  • environ 3,281 pieds (par définition le pied est égal à 30,48 cm) ;
  • environ 39,37 pouces (par définition le pouce est égal à 2,54 cm).

Quelques points de repères[modifier | modifier le code]

  • La taille d'un pied humain est d'environ 0,30 m.
  • On parcourt environ 5 000 m en une heure de marche rapide.
  • Un grand pas fait environ un mètre.
  • Un pendule de 1 mètre de long effectue une oscillation complète (un aller-retour) en environ 2 secondes.

Multiples et sous-multiples du mètre[modifier | modifier le code]

Multiples et sous-multiples du mètre
Facteur Nom préfixé Symbole Nombre en français[b] Nombre en mètres
1024 yottamètre Ym quadrillion 1 000 000 000 000 000 000 000 000
1021 zettamètre Zm trilliard 1 000 000 000 000 000 000 000
1018 examètre Em trillion 1 000 000 000 000 000 000
1015 pétamètre Pm billiard 1 000 000 000 000 000
1012 téramètre Tm billion 1 000 000 000 000
109 gigamètre Gm milliard 1 000 000 000
106 mégamètre Mm million 1 000 000
103 kilomètre km mille 1 000
102 hectomètre hm cent 100
101 décamètre dam dix 10
100 mètre m un 1
10-1 décimètre dm dixième 0,1
10-2 centimètre cm centième 0,01
10-3 millimètre mm millième 0,001
10–6 micromètre μm millionième 0,000 001
10–9 nanomètre nm milliardième 0,000 000 001
10-12 picomètre pm billionième 0,000 000 000 001
10-15 femtomètre fm billiardième 0,000 000 000 000 001
10-18 attomètre am trillionième 0,000 000 000 000 000 001
10-21 zeptomètre zm trilliardième 0,000 000 000 000 000 000 001
10-24 yoctomètre ym quadrillionième 0,000 000 000 000 000 000 000 001
Anciens multiples et sous-multiples du mètre
Facteur Nom préfixé Symbole Nombre en français Nombre en mètres
104 myriamètre[81] mam dix mille 10 000
10-4 décimillimètre[82] dmm dix millième 0,0001

Description de multiples[modifier | modifier le code]

De fait, au-delà du milliard de kilomètres on utilise rarement l'unité standard : on lui préfère l'unité astronomique (ua), d'où est déduite l'unité dérivée, le parsec : ceci était nécessaire pour ne pas dénaturer les mesures précises de distance de parallaxe par une réévaluation de l'ua, liée à la valeur de la constante gravitationnelle (G). Cette situation peu œcuménique a été levée par les mesures directes par écho radar sur les planètes.

Décamètre
dam = 10 m.
Cette unité est adaptée au calcul de la superficie d'un terrain, par le biais de l'are, superficie, par exemple, d'un carré d'un décamètre de côté.
Hectomètre
hm = 100 m.
Cette unité est adaptée au calcul de la superficie d'une terre agricole, par le biais de l'hectare, superficie, par exemple, d'un carré d'un hectomètre de côté.
Kilomètre
km = 1 000 m.
C'est le multiple du mètre le plus fréquemment utilisé pour mesurer les distances terrestres (comme entre les villes). Le long des routes, les bornes kilométriques sont placées tous les kilomètres.
Myriamètre
1 mam = 10 000 m.
Il équivaut à 10 km. Cette unité est obsolète.
Mégamètre
Mm = 1 × 106 m = 1 000 000 m.
C'est une unité de mesure adaptée pour le diamètre des planètes. La Terre mesure par exemple environ 12,8 mégamètres de diamètre.
Il équivaut à 1 000 km, soit 1 × 103 km.
Gigamètre
Gm = 1 × 109 m = 1 000 000 000 m.
C'est un multiple du mètre utilisé pour mesurer les distances interplanétaires courtes, par exemple entre une planète et ses satellites naturels. La Lune orbite à 0,384 gigamètre de la Terre (environ 1,3 seconde-lumière).
On peut également s'en servir pour exprimer le diamètre des étoiles (environ 1,39 gigamètres pour le Soleil).
Une unité astronomique représente approximativement 150 gigamètres.
Il équivaut à 1 million de kilomètres, soit 1 × 106 km.
Téramètre
Tm = 1 × 1012 m = 1 000 000 000 000 m.
C'est un multiple du mètre utilisé pour mesurer les grandes distances interplanétaires. Par exemple la planète naine Pluton orbite à une moyenne de 5,9 téramètres du Soleil.
Il équivaut à 1 milliard de kilomètres, soit 1 × 109 km.
Pétamètre
Pm = 1 × 1015 m = 1 000 000 000 000 000 m.
Une année-lumière vaut environ 9,47 Pm
Proxima Centauri, l'étoile la plus proche, est située à environ 40 pétamètres du Soleil.
C'est une bonne unité de mesure de la taille des nébuleuses.
Examètre
Em = 1 × 1018 m = 1 000 000 000 000 000 000 m.
Un examètre représente environ 106 années-lumière.
Un amas globulaire mesure environ un examètre de diamètre.
C'est une distance interstellaire typique dans la périphérie galactique.
Zettamètre
Zm = 1 × 1021 m = 1 000 000 000 000 000 000 000 m.
Un zettamètre représente environ 105 700 années-lumière.
La Voie lactée (notre galaxie) mesure à peu près cette taille, une vingtaine de zettamètres la sépare de la galaxie d'Andromède.
Yottamètre
Ym = 1 × 1024 m = 1 000 000 000 000 000 000 000 000 m.
Un yottamètre représente environ 105,7 millions d'années-lumière.
C'est une bonne unité de mesure des distances entre galaxies lointaines ou pour la taille des superamas.
Les objets les plus lointains de l'Univers sont situés à environ 130 yottamètres. Z8 GND 5296, découverte en 2013, serait la galaxie la plus éloignée de la nôtre[83] et la plus vieille actuellement connue. En effet, elle se situe à 13,1 milliards d'années-lumière soit environ 124 yottamètres.

Description des sous-multiples[modifier | modifier le code]

Décimètre
dm = 0,1 m.
Au cours du XXe siècle, la règle graduée standard des écoliers était le double-décimètre (2 dm = 20 cm) et les programmes scolaires se référaient à cette appellation.
Centimètre
cm = 0,01 m.
Le centimètre est une des unités de base du système CGS.
Millimètre
mm = 1 × 10−3 m = 0,001 m.
Une représentation graphique manuelle précise nécessite l'utilisation de papier millimétré.
Décimillimètre
1 dmm = 1 × 10−4 m = 0,0001 m.
Cette unité est obsolète.
Micromètre
µm = 1 × 10−6 m = 0,000 001 m.
Le micromètre était autrefois appelé « micron » (symbole : µ). L'utilisation du terme « micron » a été bannie par la 13e CGPM en 1968.
Cette unité est utilisée pour exprimer la taille des cellules.
Nanomètre
nm = 1 × 10−9 m = 0,000 000 001 m.
Le nanomètre est utilisé pour mesurer les longueurs d'onde plus courtes que celle de l'infrarouge (visible, ultraviolet et rayons X) et la finesse de gravure d'un microprocesseur. La limite théorique qui fait la frontière entre la micro-électronique et la nanoélectronique est une finesse de gravure de 100 nm. Les rayons atomiques varient entre 0,025 et 0,2 nm.
Le nanomètre est aussi l'unité de mesure traditionnelle de la rugosité, contrôle de l'état de surface (métrologie dimensionnelle)
Les virus mesurent quelques dizaines ou centaines de nanomètres.
Picomètre
pm = 1 × 10−12 m = 0,000 000 000 001 m.
Cette unité est de plus en plus utilisée pour mesurer les longueurs des liaisons atomiques à la place de l'ångström. 1 Å = 100 pm.
Femtomètre
fm = 1 × 10−15 m = 0,000 000 000 000 001 m.
Le femtomètre fut d'abord nommé « fermi » en l'honneur du physicien italien Enrico Fermi (le fermi comme tel ne fait pas partie du Système international).
Le femtomètre est fréquemment utilisé pour mesurer le diamètre d'un noyau atomique. Le diamètre d'un noyau atomique peut aller jusqu'à 15 fm.
Attomètre
am = 1 × 10−18 m = 0,000 000 000 000 000 001 m.
La taille maximale d'un quark est estimée à un attomètre.
Zeptomètre
zm = 1 × 10−21 m = 0,000 000 000 000 000 000 001 m.
Cette unité a un intérêt croissant au sein de la communauté scientifique. En effet, le domaine de l'infiniment petit étant en plein essor, des unités de plus en plus petites sont utilisées, par exemple dans le cadre de l'étude des particules.
Yoctomètre
ym = 1 × 10−24 m = 0,000 000 000 000 000 000 000 001 m.
Un yoctomètre est 62 milliards de fois supérieur à la longueur de Planck = 1,616 252 × 10−35 m = 0,000 000 000 000 000 000 000 000 000 000 000 016 m.

Multiples sans préfixes[modifier | modifier le code]

Ångström
Å = 1 × 10−10 m = 0,000 000 000 1 m.
Cette unité de mesure, qui ne fait pas partie du Système international, est anciennement utilisée pour mesurer les rayons atomiques.

Notes et références[modifier | modifier le code]

Notes[modifier | modifier le code]

  1. À l'époque un quart de méridien, car celui-ci était considéré comme faisant le tour de la Terre. Aujourd'hui un méridien va du pôle Nord au pôle Sud, si bien que le mètre est approximativement égal à la 10 000 000e partie d'un demi-méridien.
  2. L'échelle longue utilisée ici est la référence dans les pays francophones, notamment en France, au Canada, ainsi que généralement en Europe (sauf au Royaume-Uni). L'échelle courte est utilisée avant tout par les États-Unis, le Brésil, la Grande-Bretagne et les autres pays de langue anglaise (sauf le Canada).

Références[modifier | modifier le code]

  1. Définitions lexicographiques et étymologiques de « mètre » (sens Étymol. et Hist. - 2) du Trésor de la langue française informatisé, sur le site du Centre national de ressources textuelles et lexicales.
  2. « Résolution 1 de la 17e réunion de la CGPM (1983) – Définition du mètre », sur le site du Bureau international des poids et mesures, bipm.org. ; version [PDF], p. 97.
  3. Borda, Lagrange, Condorcet et Laplace, Rapport fait à l'Académie des Sciences sur la nomenclature des mesures linéaires et superficielles, 11 juillet 1792, Annales de chimie, Paris, 1793, Volume 16, p. 253.
  4. Jean Leurechon, Du thermomètre, Récréation mathématique, Rigaud, 1627, p. 102
  5. Baromètre, étymologie, Cnrtl.
  6. Lagrange, Borda, Laplace, Monge et Condorcet, Rapport sur le choix d'une unité de mesure, Académie des sciences, 19 mars 1791 / Talleyrand, Projet de décret sur l'unité de mesure adopté par l'Assemblée Nationale, 26 mars 1791, Archives Parlementaires de 1787 à 1860, Tome XXIV, p. 394-397 / p. 379
  7. Borda et Brisson, Rapport sur la vérification du mètre qui doit servir d'étalon pour la fabrication des mesures provisoires, 18 Messidor and 3 (6 Juillet 1795), Jean-Baptiste Delambre, Pierre Méchain, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone. T. 3, Paris, 1806-1810., p. 673-685.
  8. Borda, Lagrange, Condorcet, Laplace, Rapport à l'Académie des Sciences sur l'unité des Poids et sur la nomenclature de ses division, 19 janvier 1793, Annales de chimie, Paris, 1793, Volume 16, p. 267-268.
  9. Décret du 1er août 1793, Présidence Danton, Rapporteur Arbogast, Convention Nationale, Archives Parlementaires de 1787 à 1860, Tome LXX, p. 71.
  10. Décret 18 germinal ans III (7 avril 1795), fondé sur le rapport sur la nécessité et les moyens d'introduire les nouveaux poids et mesures dans la République, 11 ventose an 3 (1er mars 1795) et son projet de décret, président Boissy d'Anglas, rapporteur Prieur de la Côte d'Or, p. 186-188 et 193-196.
  11. Etalon prototype du mètre avec son étui fabriqué par Lenoir, platine, 1799. Archives Nationales AE/I/23/10.
  12. Loi du 19 frimaire an 8 - 10 décembre 1799, Poids et mesures, Dictionnaire général d'administration: E-V, Paul Dupont, 1847, p. 1373.
  13. Mètre définitif, Jean-Baptiste Delambre, Pierre Méchain, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone. T. 3, Paris, 1806-1810, p. 691-693.
  14. a et b Denis Février, « Histoire du mètre », sur Direction Générale des Entreprises (DGE), (consulté le 26 janvier 2018)
  15. a et b F. R. Hassler, Transactions of the American Philosophical Society., vol. new ser.:v.2 (1825), (lire en ligne), p. 234-240, 253
  16. « e-expo: Ferdinand Rudolf Hassler », sur www.f-r-hassler.ch (consulté le 17 février 2020)
  17. « Hassler, Ferdinand Rudolf », sur hls-dhs-dss.ch (consulté le 25 février 2020)
  18. a b c d e et f Suzanne Débarbat et Terry Quinn, « Les origines du système métrique en France et la Convention du mètre de 1875, qui a ouvert la voie au Système international d'unités et à sa révision de 2018 », Comptes Rendus Physique, série The new International System of Units / Le nouveau Système international d’unités, vol. 20, no 1,‎ , p. 6–21 (ISSN 1631-0705, DOI 10.1016/j.crhy.2018.12.002, lire en ligne, consulté le 8 janvier 2020)
  19. a et b Historique du SI, BIPM.
  20. Loi du 4 juillet 1837 relative aux poids et mesures, Abrogation du décret du 12 février 1812. Légifrance.
  21. « Metric Act of 1866 – US Metric Association », sur usma.org (consulté le 1er février 2020)
  22. « H.R. 596, 39th Congress – US Metric Association », sur usma.org (consulté le 1er février 2020)
  23. Comptes Rendus de la CGPM de 1889, BIPM, 1890.
  24. « BIPM - la définition du mètre », sur www.bipm.org (consulté le 31 janvier 2020)
  25. Résolution 6 de la 11e CGPM, 1960, Bureau international des poids et mesures.
  26. Résolution 1 de la 17e CGPM, 1983, Bureau international des poids et mesures.
  27. Résolution 1 de la 26e CGPM, 2018, Bureau international des poids et mesures.https://www.bipm.org/fr/CGPM/db/26/1/
  28. Christiaan Huygens, L'horloge à pendule de 1651 à 1666, Oeuvres complètes,Société hollandaise des sciences, La Haye, 1888-1950.
  29. La cycloïde, Le pendule cycloïdal de Huygens, Le Repaire des Sciences.
  30. Vincent Deparis, La découverte historique de la variation de la pesanteur avec la latitude, Culture Sciences physiques, 2013.
  31. John Wilkins, An essay towards a real character, and a philosophical language, Royal Society, 1668, p. 223.
  32. Baron de Zach, Correspondance astronomique, géographique, hydrographique et statistique, Ponthenier, 1825.
  33. Jean Picard, Mesure de la terre, Paris, 1671, p. 4.
  34. Formey, d’Alembert, Jaucourt, Pendule, L’Encyclopédie, 1re éd. 1751, Tome 12, p. 294.
  35. M. de la Condamine, Nouveau projet d'une mesure invariable propre à servir de mesure commune à toutes les nations, Académie royale des sciences, Année 1747, p. 489-514.
  36. Alexis-Jean-Pierre Paucton, Métrologie ou Traité des mesures, poids et monnoies des anciens peuples & des modernes, Vve Desaint, Paris, 1780, p. 105.
  37. a et b Encyclopædia Universalis (Firm), Encyclopædia universalis. : Géophysique, Encyclopædia universalis, (ISBN 978-2-85229-290-1, OCLC 36747385, lire en ligne), vol 10, p. 370
  38. « Earth, Figure of the », dans 1911 Encyclopædia Britannica, vol. Volume 8 (lire en ligne)
  39. Michèle Audin, Géométrie, mesurer la terre, mesurer la Terre ?, CNRS, Images de mathématiques, 2019.
  40. Lucien Gallois, L'académie des sciences et les origines de la carte de Cassini. In: Annales de Géographie, t. 18, n°100, 1909. pp. 289-310.
  41. Vincent Deparis, La forme de la Terre : plate, oblongue ou aplatie aux pôles ?, Planet Terre, Eduscol, 2001.
  42. M. de la Condamine, Nouveau projet d'une mesure invariable propre à servir de mesure commune à toutes les nations, Académie royale des sciences, Année 1747.
  43. Rob Iliffe, Ce que Newton connut sans sortir de chez lui : Maupertuis et la forme de la terre dans les années 1730, Histoire & Mesure, 1993, Vol. 8, N°3-4, p. 355-386.
  44. César-François Cassini de Thury, La méridienne de l’Observatoire Royal de Paris, 1744.
  45. César-François Cassini de Thury, Avertissement ou Introduction à la carte générale et particulière de la France, 1784.
  46. (en) « Clairaut's equation | mathematics », sur Encyclopedia Britannica (consulté le 2 février 2020)
  47. Général Perrier, « HISTORIQUE SOMMAIRE DE LA GEODESIE », Thalès, vol. 2,‎ , p. 117–129 (ISSN 0398-7817, lire en ligne, consulté le 2 février 2020)
  48. a b et c Jean-Jacques Levallois, « L'Académie Royale des Sciences et la Figure de la Terre », sur Gallica, La Vie des sciences, (consulté le 9 janvier 2020), p. 261-301
  49. Serge Mehl, Géodésie & triangulation.
  50. Compte rendu par l'Académie des Sciences à la Convention Nationale de l'état des travaux entrepris pour parvenir à l'uniformité des Poids et mesures, 25 novembre 1792, p. 255-267.
  51. Léon Chauvin, Histoire du mètre d'après les travaux et rapports de Delambre, Méchain, Van Swinden, E. Ardant, Limoges, 1901, p. 74.
  52. Damien Gayet, Un homme à la mesure du mètre - II (Joseph Delambre), CNRS, Images de mathématiques, 2012.
  53. Jean-Baptiste Delambre, Pierre Méchain, Discours préliminaire, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone. T. 1, Paris, 1806-1810, p. 94.
  54. Alexander Ross Clarke et Henry James, « XIII. Results of the comparisons of the standards of length of England, Austria, Spain, United States, Cape of Good Hope, and of a second Russian standard, made at the Ordnance Survey Office, Southampton. With a preface and notes on the Greek and Egyptian measures of length by Sir Henry James », Philosophical Transactions of the Royal Society of London, vol. 163,‎ , p. 445–469 (DOI 10.1098/rstl.1873.0014, lire en ligne, consulté le 8 janvier 2020)
  55. Guillaume Bigourdan, Le système métrique des poids et mesures ; son établissement et sa propagation graduelle, avec l'histoire des opérations qui ont servi à déterminer le mètre et le kilogramme, Paris : Gauthier-Villars, (lire en ligne), p. 146-154
  56. « Carlos Ibáñez e Ibáñez de Ibero | Real Academia de la Historia », sur dbe.rah.es (consulté le 8 janvier 2020)
  57. Jean Brunner, « Comptes rendus hebdomadaires des séances de l'Académie des sciences / publiés... par MM. les secrétaires perpétuels », sur Gallica, (consulté le 8 janvier 2020), p. 150-152
  58. a et b Carlos Ibáñez e Ibáñez de Ibero (trad. Aimé Laussedat), Expériences faites avec l'appareil à mesurer les bases appartenant à la commission de la carte d'Espagne /: ouvrage publié par ordre de la reine, J. Dumaine, (lire en ligne)
  59. Ch-Ed Guillaume, « La mesure rapide des bases géodésiques », Journal de Physique Théorique et Appliquée, vol. 5, no 1,‎ , p. 242–263 (ISSN 0368-3893, DOI 10.1051/jphystap:019060050024200, lire en ligne, consulté le 8 janvier 2020)
  60. Louis Puissant, « Comptes rendus hebdomadaires des séances de l'Académie des sciences / publiés... par MM. les secrétaires perpétuels », sur Gallica, (consulté le 9 janvier 2020), p. 428-433
  61. Ernest Lebon, Histoire abrégée de l'astronomie, Paris, Gauthier-Villars, (lire en ligne), p. 168-169
  62. a b c et d (es) Carlos Ibáñez e Ibáñez de Ibero, Discursos leidos ante la Real Academia de Ciencias Exactas Fisicas y Naturales en la recepcion pública de Don Joaquin Barraquer y Rovira, Madrid, Imprenta de la Viuda e Hijo de D.E. Aguado, , 80 p. (lire en ligne), p. 70-78
  63. Mitteleuropäische Gradmessung, General-Bericht über die mitteleuropäische Gradmessung für das Jahr 1865. : Exposé de l'état des Travaux géodesiques poursuivis en Espagne, communiqué a la Commission permanente de la Conférence internationale, par le Colonel Ibáñez, membre de I'Academie Royale des sciences et délégué du Gouvernement espagnol. (Séance du 9 avril 1866), Berlin, Reimer, , 70 p. (lire en ligne), p. 56-58
  64. Carlos Ibáñez e Ibáñez de Ibero (trad. Aimé Laussedat), Base centrale de la triangulation géodésique d'Espagne / par D. Carlos Ibañez é Ibañez,... D. Frutos Saavedra Meneses,... D. Fernando Monet,... [et al.] ; trad. de l'espagnol, par A. Taussedat,... : Comparaison de la règle géodésique égyptienne avec la règle espagnole, (lire en ligne), Appendice N.° 9 p. CXCIII-CCXII
  65. T. Soler et Engineer-geodesist-metrologist General Carlos Ibáñez, A profile of General Carlos Ibáñez e Ibáñez de Ibero: first president of the International Geodetic Association, (lire en ligne), p. 178-179
  66. (de) Bericht über die Verhandlungen der vom 30. September bis 7. October 1867 zu BERLIN abgehaltenen allgemeinen Conferenz der Europäischen Gradmessung, Berlin, Central-Bureau der Europäischen Gradmessung, (lire en ligne), p. 1, 14, 123-134
  67. (en) Hermann Drewes, Franz Kuglitsch, József Adám et Szabolcs Rózsa, « The Geodesist’s Handbook 2016 », Journal of Geodesy, vol. 90, no 10,‎ , p. 907–1205, 913 (ISSN 1432-1394, DOI 10.1007/s00190-016-0948-z, lire en ligne, consulté le 21 janvier 2020)
  68. a b et c Adolphe Hirsch, Comité international des poids et mesures, Procès-verbaux des séances de l'année 1891, Paris, Gauthier-Villars et fils, , 200 p. (lire en ligne), p. 8-9
  69. La Commission internationale du mètre(1870-1872), BIPM.
  70. Procès-verbaux de la Conférence géodésique internationale pour la mesure des degrés en Europe, réunie à Berlin du 30 septembre au 7 octobre 1867., Neuchâtel,, 1867. (lire en ligne)
  71. Procès-verbaux: Commission Internationale du Mètre. Réunions générales de 1872, Imprim. Nation, (lire en ligne), p. 153-155
  72. COMITÉ INTERNATIONAL DES POIDS ET MESURES., PROCÈS-VERBAUX DES SÉANCES DE 1875-1876., Paris, Gauthier-Villars, , 134 p. (lire en ligne), p. 3
  73. Charles-Édouard Guillaume, « Adolphe Hirsch », La Nature,‎ (lire en ligne)
  74. Wilhelm Kösters, Wilhelm Foerster (1832-1821), Paris, , 6 p. (lire en ligne)
  75. COMlTÉ INTERNATIONAL DES POIDS ET MESURES., PROCÈS-VERBAUX DES SÉANCES. DEUXIÈME SÉRIE. : TOME II. SESSION DE 1903., Paris, GAUTHIER-VILLARS, , 172 p. (lire en ligne), p. 5-7
  76. « Wild, Heinrich », sur hls-dhs-dss.ch (consulté le 25 février 2020)
  77. La Convention du Mètre, BIPM.
  78. Le Système international d'unités (SI), Sèvres, Bureau international des poids et mesures, , 9e éd., 216 p. (ISBN 978-92-822-2272-0, lire en ligne [PDF]).
  79. « Afnor FD X 02-003, § 6.3, mai 2013 – Normes fondamentales – Principes de l'écriture des nombres, des grandeurs, des unités et des symboles », sur afnor.org, Afnor (consulté le 16 novembre 2013).
  80. « Le Système international d'unités 9e édition, 2019 – § 5.4.2 Symboles des grandeurs et unités », sur bipm.org, Bureau international des poids et mesures (consulté le 16 mars 2020), p. 37 [PDF].
  81. Décret no 14608 du 26 juillet 1919, portant règlement d'administration publique pour l'exécution de la loi du 2 avril 1919 sur les unités de mesure.
  82. Louis François Thomassin, Instructions sur les nouvelles mesures, Latour, 1801.
  83. (en) « Z8-GND-5296: Most Distant Galaxy Yet Discovered », sur Sci-News.com, (consulté le 7 avril 2014).

Annexes[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]


Bibliographie[modifier | modifier le code]

  • Jean-Baptiste Delambre, Pierre Méchain, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone, Paris, 1806-1810, T. 1, T. 2, T. 3.

Liens externes[modifier | modifier le code]



This page is based on a Wikipedia article written by contributors (read/edit).
Text is available under the CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.

Destek