Coefficients calorimétriques et thermoélastiques

En physique, et plus particulièrement en thermodynamique, les coefficients calorimétriques et thermoélastiques sont des coefficients permettant d'exprimer, pour les premiers, la chaleur absorbée par un système thermodynamique et, pour les seconds, les variations de volume et de pression de ce système. Ces coefficients sont définis pour les corps purs comme pour les mélanges. Les transformations étudiées pour les établir s'effectuent sans changement de composition ni de phase.

Ces coefficients sont liés aux potentiels thermodynamiques, dont ils sont les dérivées secondes. Il est ainsi possible d'établir le signe des capacités thermiques et des coefficients de compressibilité, ainsi que diverses relations, notamment les relations de Clapeyron, relation de Mayer et relation de Reech. Les coefficients calorimétriques sont liés aux variations de l'entropie du système. Les coefficients thermoélastiques permettent d'établir son équation d'état.

Définitions

[modifier | modifier le code]

Lorsqu'elles existent, les notations recommandées par le Green Book de l'Union internationale de chimie pure et appliquée (IUPAC)[1] sont indiquées entre parenthèses. Par exemple les notations proposées pour le coefficient de dilatation isobare sont signalées (Green Book p. 56 : , , ). Ces préconisations sont dans la mesure du possible respectées dans cet article, sauf lorsqu'un autre usage prévaut ; par exemple la compressibilité isotherme est notée selon un usage courant dans la littérature[2], alors que le Green Book p. 56 préconise .

Toutes ces définitions supposent des transformations à composition constante, c'est-à-dire l'absence de réaction chimique, d'apport ou d'extraction de matière. Ces transformations ayant lieu à quantité de matière constante , ceci ne sera pas reporté dans les notations afin d'alléger les expressions mathématiques. Il sera par exemple noté plutôt que . De même, les termes liés aux variations des quantités de matière ne seront pas reportés dans les différentielles : par exemple la différentielle de l'énergie interne sera simplifiée en . Ces transformations ont également lieu en l'absence de changement de phase, le corps pur ou le mélange subissant la transformation étant supposé en une seule phase. Enfin, les mélanges sont supposés homogènes.

Coefficients calorimétriques

[modifier | modifier le code]

Dans une transformation réversible, la chaleur absorbée par un corps pur ou un mélange de composition constante peut être exprimée à l'aide de six coefficients calorimétriques selon les variables suivies lors de la transformation[3],[4] :

Coefficients calorimétriques :

avec :

Capacité thermique isochore :
Elle représente la chaleur absorbée par le corps lors d'une variation de température à volume constant ;
  • le coefficient de dilatation isotherme (anciennement coefficient de chaleur latente de dilatation isotherme[5]), grandeur intensive exprimée en pascals, Pa :
Coefficient de dilatation isotherme :
Il représente la chaleur absorbée par le corps lors d'une variation de volume à température constante ;
  • (Green Book p. 56) la capacité thermique isobare (anciennement capacité calorifique à pression constante[5]), grandeur extensive exprimée en joules par kelvin, J/K :
Capacité thermique isobare :
Elle représente la chaleur absorbée par le corps lors d'une variation de température à pression constante ;
  • le coefficient de compression isotherme (anciennement coefficient de chaleur latente de compression isotherme[5]), grandeur extensive exprimée en mètres cubes, m3 :
Coefficient de compression isotherme :
Il représente la chaleur absorbée par le corps lors d'une variation de pression à température constante ;
  • un coefficient sans nom attribué (anciennement coefficient de chaleur latente de dilatation isobare[5]), grandeur intensive exprimée en pascals, Pa :
Il représente la chaleur absorbée par le corps lors d'une variation de volume à pression constante ;
  • un coefficient sans nom attribué (anciennement coefficient de chaleur latente de compression isochore[5]), grandeur extensive exprimée en mètres cubes, m3 :
Il représente la chaleur absorbée par le corps lors d'une variation de pression à volume constant.

Coefficients thermoélastiques

[modifier | modifier le code]

Les trois coefficients thermoélastiques servent à exprimer la variation de volume ou de pression d'un corps pur ou d'un mélange à composition constante lors d'une transformation réversible[2] :

Coefficients thermoélastiques :

avec :

  • la température ;
  • la pression ;
  • le volume ;
  • (Green Book p. 56 : , , ) le coefficient de dilatation isobare (à pression constante)[5], grandeur intensive exprimée en K−1 :
Coefficient de dilatation isobare :
Il représente la variation relative de volume due à une variation de température à pression constante ;
Coefficient de compression isochore :
Il représente la variation relative de pression due à une variation de température à volume constant ;
Coefficient de compressibilité isotherme :
Il représente la variation relative de volume due à une variation de pression à température constante.

Autres coefficients

[modifier | modifier le code]

Capacités thermiques molaires, molaires partielles et massiques

[modifier | modifier le code]

Les deux capacités thermiques et sont des grandeurs extensives, elles sont proportionnelles à la quantité de matière , ou à la masse , contenue dans le système subissant la transformation.

On définit les capacités molaires, grandeurs intensives exprimées en J K−1 mol−1, par (Green Book p. 56) :

Capacité thermique isochore molaire :
Capacité thermique isobare molaire :

Ces grandeurs peuvent également être notées respectivement et (Green Book p. 56).

On définit les capacités massiques (ou spécifiques), grandeurs intensives exprimées en J K−1 kg−1, par (Green Book p. 56) :

Capacité thermique isochore massique :
Capacité thermique isobare massique :

Si le système contient espèces chimiques, chaque espèce étant représentée par la quantité , on peut définir pour chaque espèce des capacités molaires partielles, grandeurs intensives exprimées en J K−1 mol−1 (Green Book p. 57) :

Capacité thermique isochore molaire partielle de  :
Capacité thermique isobare molaire partielle de  :

Le théorème d'Euler sur les fonctions homogènes du premier ordre permet d'écrire :

ou, en introduisant la quantité totale de matière dans le mélange et la fraction molaire du corps dans le mélange :

Coefficient de compressibilité isentropique

[modifier | modifier le code]

On définit le coefficient de compressibilité isentropique[5], noté (Green Book p. 56 : ), par :

Coefficient de compressibilité isentropique :

Ce coefficient est une grandeur intensive exprimée en Pa−1. Il représente la variation relative de volume due à une variation de pression à entropie constante.

La différentielle du volume pouvant s'écrire :

en considérant les définitions de et on obtient la relation :

On peut écrire pour l'entropie :

on a donc la relation :

(rd1) :

Coefficient de Laplace

[modifier | modifier le code]

Soit le coefficient de Laplace ou indice adiabatique, noté (Green Book p. 57 : , ) et défini par :

Coefficient de Laplace :

Ce coefficient est une grandeur intensive adimensionnelle. Les capacités thermiques dépendent de la température, de la pression et du volume, ce coefficient n'est donc pas une constante. Cependant, dans le cas des gaz parfaits, les capacités thermiques ne dépendent que de la température, et il peut être admis que ce coefficient est constant sur de courtes plages de température : un gaz parfait pour lequel ne dépend pas de la température est appelé gaz de Laplace et répond à la loi de Laplace. Pour des processus isentropiques impliquant de grands changements de température la loi de Laplace n'est pas rigoureuse, il faut alors tenir compte de la variation de avec la température.

D'autre part, puisque (voir paragraphes Stabilité thermodynamique, signe des coefficients et Relation de Mayer générale), alors :

Module d'élasticité isostatique

[modifier | modifier le code]

La différentielle de la pression peut être écrite sous la forme :

avec (Green Book p. 15) le module d'élasticité isostatique :

Module d'élasticité isostatique :

Ce coefficient est une grandeur intensive exprimée en pascals, Pa.

Le module d'élasticité est l'inverse du coefficient de compressibilité isotherme :

(rd2) :

Facteur de compressibilité

[modifier | modifier le code]

Le facteur de compressibilité d'un fluide, noté (Green Book p. 57), est défini par :

Facteur de compressibilité :

avec :

Le facteur de compressibilité est une grandeur intensive adimensionnelle représentant le rapport du volume d'un fluide réel au volume du gaz parfait correspondant aux mêmes pression, température et composition : selon la loi des gaz parfaits. Le facteur de compressibilité vaut donc 1 pour un gaz parfait, quelles que soient sa pression, sa température et sa composition.

Le facteur de compressibilité est lié aux coefficients thermoélastiques du fluide réel et du gaz parfait correspondant par les relations[6] :

Variation isobare :
Variation isochore :
Variation isotherme :

avec :

  • le coefficient de dilatation isobare du gaz parfait correspondant ;
  • le coefficient de compression isochore du gaz parfait correspondant ;
  • le coefficient de compressibilité isotherme du gaz parfait correspondant ;
  • le module d'élasticité isostatique du gaz parfait correspondant.

Relations avec les potentiels thermodynamiques

[modifier | modifier le code]

Relations fondamentales

[modifier | modifier le code]

Les coefficients calorimétriques et thermoélastiques peuvent être exprimés comme des dérivées partielles secondes des potentiels thermodynamiques énergie interne , enthalpie , énergie libre et enthalpie libre par rapport à leurs variables naturelles volume , entropie , pression et température  : respectivement , , et . Ces relations fondamentales sont[7] :

(rf1) :  ; (rf2) :
(rf3) :  ; (rf4) :
(rf5) :  ; (rf6) :
(rf7) :  ; (rf8) :
(rf9) :  ; (rf10) :
(rf11) :  ; (rf12) :
(rf13) :  ; (rf14) :
(rf15) :  ; (rf16) :

Ces relations fondamentales permettent d'établir, entre autres :

Autres relations avec les potentiels thermodynamiques

[modifier | modifier le code]

Avec l'énergie interne

[modifier | modifier le code]

La différentielle de l'énergie interne dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :

Ni la température ni la pression ne sont des variables naturelles de .

Coefficient de Joule-Gay-Lussac
[modifier | modifier le code]

En substituant on obtient[8] :

On a la relation[8] :

Capacité thermique isochore :

À partir de la différentielle de on peut écrire :

On a, selon la relation (r2) :

On définit un nouveau coefficient appelé coefficient de Joule-Gay-Lussac :

Coefficient de Joule-Gay-Lussac :

Dans une détente isoénergétique ce coefficient, qui s'exprime en K m−3, permet de quantifier le changement de température d'un corps en fonction de son volume. Lorsque la température augmente lorsque le volume augmente ; lorsque la température diminue lorsque le volume augmente. Pour les gaz parfaits , d'où  : leur température ne varie pas dans ce genre de détente et ces gaz répondent à la première loi de Joule. La plupart des gaz réels se refroidissent dans une détente isoénergétique (), quelle que soit la température initiale. Les exceptions connues sont l'hélium, l'hydrogène et certains gaz rares qui ont des plages de température et de volume dans lesquelles ils se réchauffent dans ce type de détente ()[9].

Paramètre de Grüneisen
[modifier | modifier le code]

En substituant on obtient :

On a la relation :

Le paramètre de Grüneisen (Green Book p. 43 : , ) est défini par[10],[11],[12] :

Paramètre de Grüneisen :

avec la masse volumique et la capacité thermique isochore massique. Ce paramètre est une grandeur intensive adimensionnelle, de l'ordre de grandeur de quelques unités à toute température pour la majorité des solides ; il existe quelques cas de valeurs très élevées, positives ou négatives[13].

Les relations (rd2), (r1) et (r2) donnent successivement :

Avec (r4) on a[14] :

Avec la relation :

on a également[14],[15] :

À partir de la définition de , la relation (rd2) et la relation de Reech permettent d'écrire la relation :

par laquelle le coefficient de Grüneisen est déterminé expérimentalement[13].

L'une des formes de la relation de Mayer générale donne, avec la relation (r1) :

En divisant par et en introduisant le coefficient de Laplace , on obtient[14],[15] :

Pour un gaz parfait quelconque . Par conséquent, pour tout gaz parfait[14] : .

Avec l'enthalpie

[modifier | modifier le code]

La différentielle de l'enthalpie dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :

Ni la température ni le volume ne sont des variables naturelles de .

Coefficient de Joule-Thomson
[modifier | modifier le code]

En substituant on obtient[16] :

On a la relation[16] :

Capacité thermique isobare :

À partir de la différentielle de on peut écrire :

On a, selon la relation (r3) :

On définit un nouveau coefficient appelé coefficient de Joule-Thomson (Green Book p. 57 : , )[17] :

Coefficient de Joule-Thomson :

Dans une détente isenthalpique ce coefficient, qui s'exprime en K Pa−1, permet de quantifier l'effet Joule-Thomson. Lorsque la température diminue lorsque la pression diminue ; lorsque la température augmente lorsque la pression diminue. Pour les gaz parfaits , d'où  : leur température ne varie pas dans ce genre de détente et ces gaz répondent à la deuxième loi de Joule[17]. Pour les gaz réels aux hautes températures , quelle que soit la pression. Pour des températures plus basses il existe, pour la plupart des gaz réels, des couples pression-température auxquels  : le coefficient de Joule-Thomson s'y annule et change de signe, aux basses pressions , aux hautes pressions [17].

Autre relation
[modifier | modifier le code]

En substituant on obtient :

On a la relation :

Avec l'énergie libre

[modifier | modifier le code]

La différentielle de l'énergie libre dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :

En substituant on obtient :

On a la relation :

Coefficient de compressibilité isotherme :

La pression n'est pas une variable naturelle de .

Avec l'enthalpie libre

[modifier | modifier le code]

La différentielle de l'enthalpie libre dans ses variables naturelles, si le processus est réversible et si le travail n'est dû qu'aux forces de pression, à composition constante s'écrit :

En substituant on obtient :

On a la relation :

Coefficient de compressibilité isotherme :

Le volume n'est pas une variable naturelle de .

Autres relations

[modifier | modifier le code]

Stabilité thermodynamique, signe des coefficients

[modifier | modifier le code]

Le deuxième principe de la thermodynamique énonce que l'entropie globale d'un système isolé ne peut que croître. Par conséquent l'entropie est une fonction concave par rapport à ses variables naturelles, qui sont toutes extensives (énergie interne, volume, quantité de matièreetc.). Les potentiels thermodynamiques sont, eux, convexes par rapport à leurs variables extensives (entropie, volume, quantité de matière, etc.) et concaves par rapport à leurs variables intensives (pression, température absolueetc.). Ceci implique, entre autres, que[18] :

et par conséquent, respectivement par (rf1), (rf3), (rf5) et (rf7), les relations[18] :

Conditions de stabilité
(rs1) :
(rs2) :
(rs3) :
(rs4) :

Une capacité thermique positive correspond aux observations communes : un corps absorbe de la chaleur lorsque sa température augmente et en restitue lorsqu'elle diminue. De même, le volume d'un corps diminue sous l'effet de la pression ; le signe de l'expression est donc nécessaire pour obtenir une valeur positive. En remplaçant le volume par la masse volumique , avec la masse, le coefficient de compressibilité isotherme peut s'écrire[2] :

La thermodynamique n'interdit pas que ces coefficients soient négatifs, mais un corps présentant de telles propriétés serait instable considéré seul car il diminuerait l'entropie, en contradiction avec le deuxième principe de la thermodynamique : une telle situation est donc difficilement observable. Cependant des coefficients négatifs peuvent être observés dans un contexte impliquant des phénomènes compensant cette instabilité. En physique stellaire la stabilité des étoiles est expliquée par une capacité thermique négative due à l'attraction gravitationnelle entre ses constituants. Une étoile génère par fusion nucléaire plus d'énergie qu'elle ne peut en rayonner, ce qui, avec une capacité thermique positive, induirait une telle accumulation de chaleur, et donc une telle augmentation de température, que l'étoile serait instable et mourrait rapidement. La capacité thermique négative permet d'accumuler la chaleur tout en maintenant une température stable[19]. D'autre part, des coefficients de compressibilité négatifs ont été observés sur des mousses métalliques et des cristaux composés d'eau et de méthanol, ces phénomènes étant expliqués par l'architecture des cristaux à l'échelle moléculaire[20],[21],[22].

La stabilité d'un corps impose également des relations telles que[18] :

qui (respectivement à l'aide de (rf2), (rf8), (rf13) et (rf3), (rf5), (rf11)) se traduisent en termes de coefficients calorimétriques et thermoélastiques par :

Conditions de stabilité
(rs5) :
(rs6) :

Le volume d'un corps augmente généralement sous l'effet d'une augmentation de la température, aussi le coefficient de dilatation isobare est-il le plus souvent positif. Néanmoins, la relation (rs6) n'impose pas le signe de ce coefficient, qui peut donc être négatif pour un corps stable[23]. L'eau liquide en est un exemple entre 0 °C et 4 °C sous 1 atm : une augmentation de la température provoque une contraction du volume, d'où un maximum de densité à 4 °C, constituant une anomalie dilatométrique[24].

Le signe du coefficient de compression isochore est le plus souvent positif, la pression augmentant le plus souvent avec la température à volume constant.

Relations entre coefficients

[modifier | modifier le code]

En considérant la relation :

après réarrangement, à partir des définitions des coefficients, on a la relation[25] :

(r1) :

Rappelons la relation (rd1) :

(rd1) :

En application du théorème de Schwarz, les relations fondamentales (rf9) et (rf10) donnent[26] :

(r2) :

les relations fondamentales (rf11) et (rf12) donnent[26] :

(r3) :

les relations fondamentales (rf13) et (rf14) donnent[26] :

(r4) :

et enfin les relations fondamentales (rf15) et (rf16) donnent[26] :

(r5) :

Relations de Clapeyron

[modifier | modifier le code]

La relation (r2) et la définition de permettent d'établir la première relation de Clapeyron[8] :

Première relation de Clapeyron : (rc1) :

La relation (r3) et la définition de permettent d'établir la deuxième relation de Clapeyron[16] :

Deuxième relation de Clapeyron : (rc2) :

Ces deux relations, appelées collectivement relations de Clapeyron[26], ne doivent pas être confondues avec la relation de Clapeyron, également appelée formule de Clapeyron, exprimant l'évolution de la pression de changement d'état d'un corps pur en fonction de la température.

Relation de Mayer générale

[modifier | modifier le code]

En considérant pour une transformation quelconque réversible[16] :

on obtient :

Or on peut écrire :

d'où les relations :

En considérant respectivement les définitions de et on obtient :

En considérant les relations (r2) et (r3), on obtient dans les deux cas :

En considérant les relations de Clapeyron (rc1) et (rc2) ou les définitions de et on obtient la relation de Mayer générale :

Relation de Mayer générale :

Avec la relation (r1) on obtient également :

Puisqu'un corps (pur ou mélange) ne peut être stable que si (relation (rs3)), cette relation induit que[27] :

Relation entre capacités thermiques :

Dans le cas d'une phase condensée (liquide ou solide), il peut être considéré que :

  • la phase est quasiment indilatable, son volume varie peu lors d'un changement de température : , soit  ;
  • la phase est quasiment incompressible, son volume varie peu lors d'un changement de pression : , soit .

Pour une phase idéalement indilatable () ou incompressible (), la relation de Mayer conduit à la relation : [28]. Les bases de données ne donnent pour les liquides et les solides, considérés comme idéalement indilatables et incompressibles, qu'une seule capacité thermique molaire :

Pour un corps idéalement indilatable ou incompressible :

Relation de Reech

[modifier | modifier le code]

En considérant la relation (rd1) dans laquelle on introduit les relations (r4) et (r5), on a :

En substituant les relations (r2) et (r3), on a :

En considérant la relation (r1) et la définition du coefficient de Laplace on obtient finalement la relation de Reech :

Relation de Reech :

D'autre part, puisque , et (voir paragraphes Stabilité thermodynamique, signe des coefficients et Relation de Mayer générale), alors la relation de Reech induit que :

Relation entre coefficients de compressibilité :

Variation isotherme des capacités thermiques

[modifier | modifier le code]

Variation de la capacité thermique isochore

[modifier | modifier le code]

La différentielle de l'énergie interne en fonction des coefficients calorimétriques et à composition constante s'écrit :

Puisque la différentielle de est exacte, le théorème de Schwarz permet d'écrire :

Par la première relation de Clapeyron (rc1) on a :

On a la relation[8] :

Variation isotherme de la capacité thermique isochore :