Mathematic algorithm for basis
In mathematics, the Zassenhaus algorithm [ 1] is a method to calculate a basis for the intersection and sum of two subspaces of a vector space . It is named after Hans Zassenhaus , but no publication of this algorithm by him is known.[ 2] It is used in computer algebra systems .[ 3]
Let V be a vector space and U , W two finite-dimensional subspaces of V with the following spanning sets :
U = ⟨ u 1 , … , u n ⟩ {\displaystyle U=\langle u_{1},\ldots ,u_{n}\rangle } and
W = ⟨ w 1 , … , w k ⟩ . {\displaystyle W=\langle w_{1},\ldots ,w_{k}\rangle .} Finally, let B 1 , … , B m {\displaystyle B_{1},\ldots ,B_{m}} be linearly independent vectors so that u i {\displaystyle u_{i}} and w i {\displaystyle w_{i}} can be written as
u i = ∑ j = 1 m a i , j B j {\displaystyle u_{i}=\sum _{j=1}^{m}a_{i,j}B_{j}} and
w i = ∑ j = 1 m b i , j B j . {\displaystyle w_{i}=\sum _{j=1}^{m}b_{i,j}B_{j}.} The algorithm computes the base of the sum U + W {\displaystyle U+W} and a base of the intersection U ∩ W {\displaystyle U\cap W} .
The algorithm creates the following block matrix of size ( ( n + k ) × ( 2 m ) ) {\displaystyle ((n+k)\times (2m))} :
( a 1 , 1 a 1 , 2 ⋯ a 1 , m a 1 , 1 a 1 , 2 ⋯ a 1 , m ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ a n , 1 a n , 2 ⋯ a n , m a n , 1 a n , 2 ⋯ a n , m b 1 , 1 b 1 , 2 ⋯ b 1 , m 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ b k , 1 b k , 2 ⋯ b k , m 0 0 ⋯ 0 ) {\displaystyle {\begin{pmatrix}a_{1,1}&a_{1,2}&\cdots &a_{1,m}&a_{1,1}&a_{1,2}&\cdots &a_{1,m}\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\a_{n,1}&a_{n,2}&\cdots &a_{n,m}&a_{n,1}&a_{n,2}&\cdots &a_{n,m}\\b_{1,1}&b_{1,2}&\cdots &b_{1,m}&0&0&\cdots &0\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\b_{k,1}&b_{k,2}&\cdots &b_{k,m}&0&0&\cdots &0\end{pmatrix}}} Using elementary row operations , this matrix is transformed to the row echelon form . Then, it has the following shape:
( c 1 , 1 c 1 , 2 ⋯ c 1 , m ∙ ∙ ⋯ ∙ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ c q , 1 c q , 2 ⋯ c q , m ∙ ∙ ⋯ ∙ 0 0 ⋯ 0 d 1 , 1 d 1 , 2 ⋯ d 1 , m ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 d ℓ , 1 d ℓ , 2 ⋯ d ℓ , m 0 0 ⋯ 0 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 0 0 ⋯ 0 ) {\displaystyle {\begin{pmatrix}c_{1,1}&c_{1,2}&\cdots &c_{1,m}&\bullet &\bullet &\cdots &\bullet \\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\c_{q,1}&c_{q,2}&\cdots &c_{q,m}&\bullet &\bullet &\cdots &\bullet \\0&0&\cdots &0&d_{1,1}&d_{1,2}&\cdots &d_{1,m}\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\0&0&\cdots &0&d_{\ell ,1}&d_{\ell ,2}&\cdots &d_{\ell ,m}\\0&0&\cdots &0&0&0&\cdots &0\\\vdots &\vdots &&\vdots &\vdots &\vdots &&\vdots \\0&0&\cdots &0&0&0&\cdots &0\end{pmatrix}}} Here, ∙ {\displaystyle \bullet } stands for arbitrary numbers, and the vectors ( c p , 1 , c p , 2 , … , c p , m ) {\displaystyle (c_{p,1},c_{p,2},\ldots ,c_{p,m})} for every p ∈ { 1 , … , q } {\displaystyle p\in \{1,\ldots ,q\}} and ( d p , 1 , … , d p , m ) {\displaystyle (d_{p,1},\ldots ,d_{p,m})} for every p ∈ { 1 , … , ℓ } {\displaystyle p\in \{1,\ldots ,\ell \}} are nonzero.
Then ( y 1 , … , y q ) {\displaystyle (y_{1},\ldots ,y_{q})} with
y i := ∑ j = 1 m c i , j B j {\displaystyle y_{i}:=\sum _{j=1}^{m}c_{i,j}B_{j}} is a basis of U + W {\displaystyle U+W} and ( z 1 , … , z ℓ ) {\displaystyle (z_{1},\ldots ,z_{\ell })} with
z i := ∑ j = 1 m d i , j B j {\displaystyle z_{i}:=\sum _{j=1}^{m}d_{i,j}B_{j}} is a basis of U ∩ W {\displaystyle U\cap W} .
Proof of correctness [ edit ] First, we define π 1 : V × V → V , ( a , b ) ↦ a {\displaystyle \pi _{1}:V\times V\to V,(a,b)\mapsto a} to be the projection to the first component.
Let H := { ( u , u ) ∣ u ∈ U } + { ( w , 0 ) ∣ w ∈ W } ⊆ V × V . {\displaystyle H:=\{(u,u)\mid u\in U\}+\{(w,0)\mid w\in W\}\subseteq V\times V.} Then π 1 ( H ) = U + W {\displaystyle \pi _{1}(H)=U+W} and H ∩ ( 0 × V ) = 0 × ( U ∩ W ) {\displaystyle H\cap (0\times V)=0\times (U\cap W)} .
Also, H ∩ ( 0 × V ) {\displaystyle H\cap (0\times V)} is the kernel of π 1 | H {\displaystyle {\pi _{1}|}_{H}} , the projection restricted to H . Therefore, dim ( H ) = dim ( U + W ) + dim ( U ∩ W ) {\displaystyle \dim(H)=\dim(U+W)+\dim(U\cap W)} .
The Zassenhaus algorithm calculates a basis of H . In the first m columns of this matrix, there is a basis y i {\displaystyle y_{i}} of U + W {\displaystyle U+W} .
The rows of the form ( 0 , z i ) {\displaystyle (0,z_{i})} (with z i ≠ 0 {\displaystyle z_{i}\neq 0} ) are obviously in H ∩ ( 0 × V ) {\displaystyle H\cap (0\times V)} . Because the matrix is in row echelon form , they are also linearly independent. All rows which are different from zero ( ( y i , ∙ ) {\displaystyle (y_{i},\bullet )} and ( 0 , z i ) {\displaystyle (0,z_{i})} ) are a basis of H , so there are dim ( U ∩ W ) {\displaystyle \dim(U\cap W)} such z i {\displaystyle z_{i}} s. Therefore, the z i {\displaystyle z_{i}} s form a basis of U ∩ W {\displaystyle U\cap W} .
Consider the two subspaces U = ⟨ ( 1 − 1 0 1 ) , ( 0 0 1 − 1 ) ⟩ {\displaystyle U=\left\langle \left({\begin{array}{r}1\\-1\\0\\1\end{array}}\right),\left({\begin{array}{r}0\\0\\1\\-1\end{array}}\right)\right\rangle } and W = ⟨ ( 5 0 − 3 3 ) , ( 0 5 − 3 − 2 ) ⟩ {\displaystyle W=\left\langle \left({\begin{array}{r}5\\0\\-3\\3\end{array}}\right),\left({\begin{array}{r}0\\5\\-3\\-2\end{array}}\right)\right\rangle } of the vector space R 4 {\displaystyle \mathbb {R} ^{4}} .
Using the standard basis , we create the following matrix of dimension ( 2 + 2 ) × ( 2 ⋅ 4 ) {\displaystyle (2+2)\times (2\cdot 4)} :
( 1 − 1 0 1 1 − 1 0 1 0 0 1 − 1 0 0 1 − 1 5 0 − 3 3 0 0 0 0 0 5 − 3 − 2 0 0 0 0 ) . {\displaystyle \left({\begin{array}{rrrrrrrr}1&-1&0&1&&1&-1&0&1\\0&0&1&-1&&0&0&1&-1\\\\5&0&-3&3&&0&0&0&0\\0&5&-3&-2&&0&0&0&0\end{array}}\right).} Using elementary row operations , we transform this matrix into the following matrix:
( 1 0 0 0 ∙ ∙ ∙ ∙ 0 1 0 − 1 ∙ ∙ ∙ ∙ 0 0 1 − 1 ∙ ∙ ∙ ∙ 0 0 0 0 1 − 1 0 1 ) {\displaystyle \left({\begin{array}{rrrrrrrrr}1&0&0&0&&\bullet &\bullet &\bullet &\bullet \\0&1&0&-1&&\bullet &\bullet &\bullet &\bullet \\0&0&1&-1&&\bullet &\bullet &\bullet &\bullet \\\\0&0&0&0&&1&-1&0&1\end{array}}\right)} (Some entries have been replaced by " ∙ {\displaystyle \bullet } " because they are irrelevant to the result.) Therefore ( ( 1 0 0 0 ) , ( 0 1 0 − 1 ) , ( 0 0 1 − 1 ) ) {\displaystyle \left(\left({\begin{array}{r}1\\0\\0\\0\end{array}}\right),\left({\begin{array}{r}0\\1\\0\\-1\end{array}}\right),\left({\begin{array}{r}0\\0\\1\\-1\end{array}}\right)\right)} is a basis of U + W {\displaystyle U+W} , and ( ( 1 − 1 0 1 ) ) {\displaystyle \left(\left({\begin{array}{r}1\\-1\\0\\1\end{array}}\right)\right)} is a basis of U ∩ W {\displaystyle U\cap W} .
^ Luks, Eugene M. ; Rákóczi, Ferenc; Wright, Charles R. B. (April 1997), "Some algorithms for nilpotent permutation groups", Journal of Symbolic Computation , 23 (4): 335– 354, doi :10.1006/jsco.1996.0092 . ^ Fischer, Gerd (2012), Lernbuch Lineare Algebra und Analytische Geometrie (in German), Vieweg+Teubner , pp. 207– 210, doi :10.1007/978-3-8348-2379-3 , ISBN 978-3-8348-2378-6 ^ The GAP Group (February 13, 2015), "24 Matrices" , GAP Reference Manual, Release 4.7 , retrieved 2015-06-11