Formulas about vectors in three-dimensional Euclidean space
The following are important identities in vector algebra . Identities that only involve the magnitude of a vector ‖ A ‖ {\displaystyle \|\mathbf {A} \|} and the dot product (scalar product) of two vectors A ·B , apply to vectors in any dimension, while identities that use the cross product (vector product) A ×B only apply in three dimensions, since the cross product is only defined there.[ nb 1] [ 1] Most of these relations can be dated to founder of vector calculus Josiah Willard Gibbs , if not earlier.[ 2]
The magnitude of a vector A can be expressed using the dot product:
‖ A ‖ 2 = A ⋅ A {\displaystyle \|\mathbf {A} \|^{2}=\mathbf {A\cdot A} } In three-dimensional Euclidean space , the magnitude of a vector is determined from its three components using Pythagoras' theorem :
‖ A ‖ 2 = A 1 2 + A 2 2 + A 3 2 {\displaystyle \|\mathbf {A} \|^{2}=A_{1}^{2}+A_{2}^{2}+A_{3}^{2}} The Cauchy–Schwarz inequality : A ⋅ B ≤ ‖ A ‖ ‖ B ‖ {\displaystyle \mathbf {A} \cdot \mathbf {B} \leq \left\|\mathbf {A} \right\|\left\|\mathbf {B} \right\|} The triangle inequality : ‖ A + B ‖ ≤ ‖ A ‖ + ‖ B ‖ {\displaystyle \|\mathbf {A+B} \|\leq \|\mathbf {A} \|+\|\mathbf {B} \|} The reverse triangle inequality : ‖ A − B ‖ ≥ | ‖ A ‖ − ‖ B ‖ | {\displaystyle \|\mathbf {A-B} \|\geq {\Bigl |}\|\mathbf {A} \|-\|\mathbf {B} \|{\Bigr |}} The vector product and the scalar product of two vectors define the angle between them, say θ :[ 1] [ 3]
sin θ = ‖ A × B ‖ ‖ A ‖ ‖ B ‖ ( − π < θ ≤ π ) {\displaystyle \sin \theta ={\frac {\|\mathbf {A} \times \mathbf {B} \|}{\left\|\mathbf {A} \right\|\left\|\mathbf {B} \right\|}}\quad (-\pi <\theta \leq \pi )} To satisfy the right-hand rule , for positive θ , vector B is counter-clockwise from A , and for negative θ it is clockwise.
cos θ = A ⋅ B ‖ A ‖ ‖ B ‖ ( − π < θ ≤ π ) {\displaystyle \cos \theta ={\frac {\mathbf {A} \cdot \mathbf {B} }{\left\|\mathbf {A} \right\|\left\|\mathbf {B} \right\|}}\quad (-\pi <\theta \leq \pi )} The Pythagorean trigonometric identity then provides:
‖ A × B ‖ 2 + ( A ⋅ B ) 2 = ‖ A ‖ 2 ‖ B ‖ 2 {\displaystyle \left\|\mathbf {A\times B} \right\|^{2}+(\mathbf {A} \cdot \mathbf {B} )^{2}=\left\|\mathbf {A} \right\|^{2}\left\|\mathbf {B} \right\|^{2}} If a vector A = (Ax , Ay , Az ) makes angles α , β , γ with an orthogonal set of x- , y- and z- axes, then:
cos α = A x A x 2 + A y 2 + A z 2 = A x ‖ A ‖ , {\displaystyle \cos \alpha ={\frac {A_{x}}{\sqrt {A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}}={\frac {A_{x}}{\|\mathbf {A} \|}}\ ,} and analogously for angles β, γ. Consequently:
A = ‖ A ‖ ( cos α i ^ + cos β j ^ + cos γ k ^ ) , {\displaystyle \mathbf {A} =\left\|\mathbf {A} \right\|\left(\cos \alpha \ {\hat {\mathbf {i} }}+\cos \beta \ {\hat {\mathbf {j} }}+\cos \gamma \ {\hat {\mathbf {k} }}\right),} with i ^ , j ^ , k ^ {\displaystyle {\hat {\mathbf {i} }},\ {\hat {\mathbf {j} }},\ {\hat {\mathbf {k} }}} unit vectors along the axis directions.
The area Σ of a parallelogram with sides A and B containing the angle θ is:
Σ = A B sin θ , {\displaystyle \Sigma =AB\sin \theta ,} which will be recognized as the magnitude of the vector cross product of the vectors A and B lying along the sides of the parallelogram. That is:
Σ = ‖ A × B ‖ = ‖ A ‖ 2 ‖ B ‖ 2 − ( A ⋅ B ) 2 . {\displaystyle \Sigma =\left\|\mathbf {A} \times \mathbf {B} \right\|={\sqrt {\left\|\mathbf {A} \right\|^{2}\left\|\mathbf {B} \right\|^{2}-\left(\mathbf {A} \cdot \mathbf {B} \right)^{2}}}\ .} (If A , B are two-dimensional vectors, this is equal to the determinant of the 2 × 2 matrix with rows A , B .) The square of this expression is:[ 4]
Σ 2 = ( A ⋅ A ) ( B ⋅ B ) − ( A ⋅ B ) ( B ⋅ A ) = Γ ( A , B ) , {\displaystyle \Sigma ^{2}=(\mathbf {A\cdot A} )(\mathbf {B\cdot B} )-(\mathbf {A\cdot B} )(\mathbf {B\cdot A} )=\Gamma (\mathbf {A} ,\ \mathbf {B} )\ ,} where Γ(A , B ) is the Gram determinant of A and B defined by:
Γ ( A , B ) = | A ⋅ A A ⋅ B B ⋅ A B ⋅ B | . {\displaystyle \Gamma (\mathbf {A} ,\ \mathbf {B} )={\begin{vmatrix}\mathbf {A\cdot A} &\mathbf {A\cdot B} \\\mathbf {B\cdot A} &\mathbf {B\cdot B} \end{vmatrix}}\ .} In a similar fashion, the squared volume V of a parallelepiped spanned by the three vectors A , B , C is given by the Gram determinant of the three vectors:[ 4]
V 2 = Γ ( A , B , C ) = | A ⋅ A A ⋅ B A ⋅ C B ⋅ A B ⋅ B B ⋅ C C ⋅ A C ⋅ B C ⋅ C | , {\displaystyle V^{2}=\Gamma (\mathbf {A} ,\ \mathbf {B} ,\ \mathbf {C} )={\begin{vmatrix}\mathbf {A\cdot A} &\mathbf {A\cdot B} &\mathbf {A\cdot C} \\\mathbf {B\cdot A} &\mathbf {B\cdot B} &\mathbf {B\cdot C} \\\mathbf {C\cdot A} &\mathbf {C\cdot B} &\mathbf {C\cdot C} \end{vmatrix}}\ ,} Since A , B, C are three-dimensional vectors, this is equal to the square of the scalar triple product det [ A , B , C ] = | A , B , C | {\displaystyle \det[\mathbf {A} ,\mathbf {B} ,\mathbf {C} ]=|\mathbf {A} ,\mathbf {B} ,\mathbf {C} |} below.
This process can be extended to n -dimensions.
Addition and multiplication of vectors [ edit ] Commutativity of addition: A + B = B + A {\displaystyle \mathbf {A} +\mathbf {B} =\mathbf {B} +\mathbf {A} } . Commutativity of scalar product: A ⋅ B = B ⋅ A {\displaystyle \mathbf {A} \cdot \mathbf {B} =\mathbf {B} \cdot \mathbf {A} } . Anticommutativity of cross product: A × B = − ( B × A ) {\displaystyle \mathbf {A} \times \mathbf {B} =\mathbf {-} (\mathbf {B} \times \mathbf {A} )} . Distributivity of multiplication by a scalar over addition: c ( A + B ) = c A + c B {\displaystyle c(\mathbf {A} +\mathbf {B} )=c\mathbf {A} +c\mathbf {B} } . Distributivity of scalar product over addition: ( A + B ) ⋅ C = A ⋅ C + B ⋅ C {\displaystyle \left(\mathbf {A} +\mathbf {B} \right)\cdot \mathbf {C} =\mathbf {A} \cdot \mathbf {C} +\mathbf {B} \cdot \mathbf {C} } . Distributivity of vector product over addition: ( A + B ) × C = A × C + B × C {\displaystyle (\mathbf {A} +\mathbf {B} )\times \mathbf {C} =\mathbf {A} \times \mathbf {C} +\mathbf {B} \times \mathbf {C} } . Scalar triple product : A ⋅ ( B × C ) = B ⋅ ( C × A ) = C ⋅ ( A × B ) = | A B C | = | A x B x C x A y B y C y A z B z C z | . {\displaystyle \mathbf {A} \cdot (\mathbf {B} \times \mathbf {C} )=\mathbf {B} \cdot (\mathbf {C} \times \mathbf {A} )=\mathbf {C} \cdot (\mathbf {A} \times \mathbf {B} )=|\mathbf {A} \,\mathbf {B} \,\mathbf {C} |={\begin{vmatrix}A_{x}&B_{x}&C_{x}\\A_{y}&B_{y}&C_{y}\\A_{z}&B_{z}&C_{z}\end{vmatrix}}.} Vector triple product : A × ( B × C ) = ( A ⋅ C ) B − ( A ⋅ B ) C {\displaystyle \mathbf {A} \times (\mathbf {B} \times \mathbf {C} )=(\mathbf {A} \cdot \mathbf {C} )\mathbf {B} -(\mathbf {A} \cdot \mathbf {B} )\mathbf {C} } . Jacobi identity : A × ( B × C ) + C × ( A × B ) + B × ( C × A ) = 0 . {\displaystyle \mathbf {A} \times (\mathbf {B} \times \mathbf {C} )+\mathbf {C} \times (\mathbf {A} \times \mathbf {B} )+\mathbf {B} \times (\mathbf {C} \times \mathbf {A} )=\mathbf {0} .} Lagrange's identity : | A × B | 2 = ( A ⋅ A ) ( B ⋅ B ) − ( A ⋅ B ) 2 {\displaystyle |\mathbf {A} \times \mathbf {B} |^{2}=(\mathbf {A} \cdot \mathbf {A} )(\mathbf {B} \cdot \mathbf {B} )-(\mathbf {A} \cdot \mathbf {B} )^{2}} . The name "quadruple product" is used for two different products,[ 5] the scalar-valued scalar quadruple product and the vector-valued vector quadruple product or vector product of four vectors .
Scalar quadruple product [ edit ] The scalar quadruple product is defined as the dot product of two cross products :
( a × b ) ⋅ ( c × d ) , {\displaystyle (\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )\ ,} where a, b, c, d are vectors in three-dimensional Euclidean space.[ 6] It can be evaluated using the Binet-Cauchy identity :[ 6]
( a × b ) ⋅ ( c × d ) = ( a ⋅ c ) ( b ⋅ d ) − ( a ⋅ d ) ( b ⋅ c ) . {\displaystyle (\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )=(\mathbf {a\cdot c} )(\mathbf {b\cdot d} )-(\mathbf {a\cdot d} )(\mathbf {b\cdot c} )\ .} or using the determinant :
( a × b ) ⋅ ( c × d ) = | a ⋅ c a ⋅ d b ⋅ c b ⋅ d | . {\displaystyle (\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )={\begin{vmatrix}\mathbf {a\cdot c} &\mathbf {a\cdot d} \\\mathbf {b\cdot c} &\mathbf {b\cdot d} \end{vmatrix}}\ .} Vector quadruple product [ edit ] The vector quadruple product is defined as the cross product of two cross products:
( a × b ) × ( c × d ) , {\displaystyle (\mathbf {a\times b} )\mathbf {\times } (\mathbf {c} \times \mathbf {d} )\ ,} where a, b, c, d are vectors in three-dimensional Euclidean space.[ 2] It can be evaluated using the identity:[ 7]
( a × b ) × ( c × d ) = ( a ⋅ ( b × d ) ) c − ( a ⋅ ( b × c ) ) d . {\displaystyle (\mathbf {a\times b} )\mathbf {\times } (\mathbf {c} \times \mathbf {d} )=(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {d} ))\mathbf {c} -(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))\mathbf {d} \ .} Equivalent forms can be obtained using the identity:[ 8] [ 9] [ 10]
( b ⋅ ( c × d ) ) a − ( c ⋅ ( d × a ) ) b + ( d ⋅ ( a × b ) ) c − ( a ⋅ ( b × c ) ) d = 0 . {\displaystyle (\mathbf {b} \cdot (\mathbf {c} \times \mathbf {d} ))\mathbf {a} -(\mathbf {c} \cdot (\mathbf {d} \times \mathbf {a} ))\mathbf {b} +(\mathbf {d} \cdot (\mathbf {a} \times \mathbf {b} ))\mathbf {c} -(\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ))\mathbf {d} =0\ .} This identity can also be written using tensor notation and the Einstein summation convention as follows:
( a × b ) × ( c × d ) = ε i j k a i c j d k b l − ε i j k b i c j d k a l = ε i j k a i b j d k c l − ε i j k a i b j c k d l {\displaystyle (\mathbf {a\times b} )\mathbf {\times } (\mathbf {c} \times \mathbf {d} )=\varepsilon _{ijk}a^{i}c^{j}d^{k}b^{l}-\varepsilon _{ijk}b^{i}c^{j}d^{k}a^{l}=\varepsilon _{ijk}a^{i}b^{j}d^{k}c^{l}-\varepsilon _{ijk}a^{i}b^{j}c^{k}d^{l}} where εijk is the Levi-Civita symbol .
Related relationships:
A consequence of the previous equation:[ 11] | A B C | D = ( A ⋅ D ) ( B × C ) + ( B ⋅ D ) ( C × A ) + ( C ⋅ D ) ( A × B ) . {\displaystyle |\mathbf {A} \,\mathbf {B} \,\mathbf {C} |\,\mathbf {D} =(\mathbf {A} \cdot \mathbf {D} )\left(\mathbf {B} \times \mathbf {C} \right)+\left(\mathbf {B} \cdot \mathbf {D} \right)\left(\mathbf {C} \times \mathbf {A} \right)+\left(\mathbf {C} \cdot \mathbf {D} \right)\left(\mathbf {A} \times \mathbf {B} \right).} In 3 dimensions, a vector D can be expressed in terms of basis vectors {A ,B ,C } as:[ 12] D = D ⋅ ( B × C ) | A B C | A + D ⋅ ( C × A ) | A B C | B + D ⋅ ( A × B ) | A B C | C . {\displaystyle \mathbf {D} \ =\ {\frac {\mathbf {D} \cdot (\mathbf {B} \times \mathbf {C} )}{|\mathbf {A} \,\mathbf {B} \,\mathbf {C} |}}\ \mathbf {A} +{\frac {\mathbf {D} \cdot (\mathbf {C} \times \mathbf {A} )}{|\mathbf {A} \,\mathbf {B} \,\mathbf {C} |}}\ \mathbf {B} +{\frac {\mathbf {D} \cdot (\mathbf {A} \times \mathbf {B} )}{|\mathbf {A} \,\mathbf {B} \,\mathbf {C} |}}\ \mathbf {C} .} These relations are useful for deriving various formulas in spherical and Euclidean geometry. For example, if four points are chosen on the unit sphere, A, B, C, D , and unit vectors drawn from the center of the sphere to the four points, a, b, c, d respectively, the identity:
( a × b ) ⋅ ( c × d ) = ( a ⋅ c ) ( b ⋅ d ) − ( a ⋅ d ) ( b ⋅ c ) , {\displaystyle (\mathbf {a\times b} )\mathbf {\cdot } (\mathbf {c\times d} )=(\mathbf {a\cdot c} )(\mathbf {b\cdot d} )-(\mathbf {a\cdot d} )(\mathbf {b\cdot c} )\ ,} in conjunction with the relation for the magnitude of the cross product:
‖ a × b ‖ = a b sin θ a b , {\displaystyle \|\mathbf {a\times b} \|=ab\sin \theta _{ab}\ ,} and the dot product:
a ⋅ b = a b cos θ a b , {\displaystyle \mathbf {a\cdot b} =ab\cos \theta _{ab}\ ,} where a = b = 1 for the unit sphere, results in the identity among the angles attributed to Gauss:
sin θ a b sin θ c d cos x = cos θ a c cos θ b d − cos θ a d cos θ b c , {\displaystyle \sin \theta _{ab}\sin \theta _{cd}\cos x=\cos \theta _{ac}\cos \theta _{bd}-\cos \theta _{ad}\cos \theta _{bc}\ ,} where x is the angle between a × b and c × d , or equivalently, between the planes defined by these vectors.[ 2]
^ a b Lyle Frederick Albright (2008). "§2.5.1 Vector algebra" . Albright's chemical engineering handbook . CRC Press. p. 68. ISBN 978-0-8247-5362-7 . ^ a b c Gibbs & Wilson 1901 , pp. 77 ff ^ Francis Begnaud Hildebrand (1992). Methods of applied mathematics (Reprint of Prentice-Hall 1965 2nd ed.). Courier Dover Publications. p. 24. ISBN 0-486-67002-3 . ^ a b Richard Courant, Fritz John (2000). "Areas of parallelograms and volumes of parallelepipeds in higher dimensions" . Introduction to calculus and analysis, Volume II (Reprint of original 1974 Interscience ed.). Springer. pp. 190– 195. ISBN 3-540-66569-2 . ^ Gibbs & Wilson 1901 , §42 of section "Direct and skew products of vectors", p.77 ^ a b Gibbs & Wilson 1901 , p. 76 ^ Gibbs & Wilson 1901 , p. 77 ^ Gibbs & Wilson 1901 , Equation 27, p. 77 ^ Vidwan Singh Soni (2009). "§1.10.2 Vector quadruple product" . Mechanics and relativity . PHI Learning Pvt. Ltd. pp. 11– 12. ISBN 978-81-203-3713-8 . ^ This formula is applied to spherical trigonometry by Edwin Bidwell Wilson, Josiah Willard Gibbs (1901). "§42 in Direct and skew products of vectors ". Vector analysis: a text-book for the use of students of mathematics . Scribner. pp. 77 ff . ^ "linear algebra - Cross-product identity" . Mathematics Stack Exchange . Retrieved 2021-10-07 . ^ Joseph George Coffin (1911). Vector analysis: an introduction to vector-methods and their various applications to physics and mathematics (2nd ed.). Wiley. p. 56 .