Spaces of test functions and distributions

From Wikipedia the free encyclopedia

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued (or sometimes real-valued) functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

There are other possible choices for the space of test functions, which lead to other different spaces of distributions. If then the use of Schwartz functions[note 1] as test functions gives rise to a certain subspace of whose elements are called tempered distributions. These are important because they allow the Fourier transform to be extended from "standard functions" to tempered distributions. The set of tempered distributions forms a vector subspace of the space of distributions and is thus one example of a space of distributions; there are many other spaces of distributions.

There also exist other major classes of test functions that are not subsets of such as spaces of analytic test functions, which produce very different classes of distributions. The theory of such distributions has a different character from the previous one because there are no analytic functions with non-empty compact support.[note 2] Use of analytic test functions leads to Sato's theory of hyperfunctions.

Notation[edit]

The following notation will be used throughout this article:

  • is a fixed positive integer and is a fixed non-empty open subset of Euclidean space
  • denotes the natural numbers.
  • will denote a non-negative integer or
  • If is a function then will denote its domain and the support of denoted by is defined to be the closure of the set in
  • For two functions , the following notation defines a canonical pairing:
  • A multi-index of size is an element in (given that is fixed, if the size of multi-indices is omitted then the size should be assumed to be ). The length of a multi-index is defined as and denoted by Multi-indices are particularly useful when dealing with functions of several variables, in particular we introduce the following notations for a given multi-index :
    We also introduce a partial order of all multi-indices by if and only if for all When we define their multi-index binomial coefficient as:
  • will denote a certain non-empty collection of compact subsets of (described in detail below).

Definitions of test functions and distributions[edit]

In this section, we will formally define real-valued distributions on U. With minor modifications, one can also define complex-valued distributions, and one can replace with any (paracompact) smooth manifold.

Notation:
  1. Let
  2. Let denote the vector space of all k-times continuously differentiable real or complex-valued functions on U.
  3. For any compact subset let and both denote the vector space of all those functions such that
    • If then the domain of is U and not K. So although depends on both K and U, only K is typically indicated. The justification for this common practice is detailed below. The notation will only be used when the notation risks being ambiguous.
    • Every contains the constant 0 map, even if
  4. Let denote the set of all such that for some compact subset K of U.
    • Equivalently, is the set of all such that has compact support.
    • is equal to the union of all as ranges over
    • If is a real-valued function on U, then is an element of if and only if is a bump function. Every real-valued test function on is always also a complex-valued test function on
The graph of the bump function where and This function is a test function on and is an element of The support of this function is the closed unit disk in It is non-zero on the open unit disk and it is equal to 0 everywhere outside of it.

Note that for all and any compact subsets K and L of U, we have:

Definition: Elements of are called test functions on U and is called the space of test function on U. We will use both and to denote this space.

Distributions on U are defined to be the continuous linear functionals on when this vector space is endowed with a particular topology called the canonical LF-topology. This topology is unfortunately not easy to define but it is nevertheless still possible to characterize distributions in a way so that no mention of the canonical LF-topology is made.

Proposition: If T is a linear functional on then the T is a distribution if and only if the following equivalent conditions are satisfied:

  1. For every compact subset there exist constants and (dependent on ) such that for all [1]
  2. For every compact subset there exist constants and such that for all with support contained in [2]
  3. For any compact subset and any sequence in if converges uniformly to zero on for all multi-indices , then

The above characterizations can be used to determine whether or not a linear functional is a distribution, but more advanced uses of distributions and test functions (such as applications to differential equations) is limited if no topologies are placed on and To define the space of distributions we must first define the canonical LF-topology, which in turn requires that several other locally convex topological vector spaces (TVSs) be defined first. First, a (non-normable) topology on will be defined, then every will be endowed with the subspace topology induced on it by and finally the (non-metrizable) canonical LF-topology on will be defined. The space of distributions, being defined as the continuous dual space of is then endowed with the (non-metrizable) strong dual topology induced by and the canonical LF-topology (this topology is a generalization of the usual operator norm induced topology that is placed on the continuous dual spaces of normed spaces). This finally permits consideration of more advanced notions such as convergence of distributions (both sequences and nets), various (sub)spaces of distributions, and operations on distributions, including extending differential equations to distributions.

Choice of compact sets K[edit]

Throughout, will be any collection of compact subsets of such that (1) and (2) for any compact there exists some such that The most common choices for are:

  • The set of all compact subsets of or
  • A set where and for all i, and is a relatively compact non-empty open subset of (here, "relatively compact" means that the closure of in either U or is compact).

We make into a directed set by defining if and only if Note that although the definitions of the subsequently defined topologies explicitly reference in reality they do not depend on the choice of that is, if and are any two such collections of compact subsets of then the topologies defined on and by using in place of are the same as those defined by using in place of

Topology on Ck(U)[edit]

We now introduce the seminorms that will define the topology on Different authors sometimes use different families of seminorms so we list the most common families below. However, the resulting topology is the same no matter which family is used.

Suppose and is an arbitrary compact subset of Suppose an integer such that [note 3] and is a multi-index with length For define:

while for define all the functions above to be the constant 0 map.

All of the functions above are non-negative -valued[note 4] seminorms on As explained in this article, every set of seminorms on a vector space induces a locally convex vector topology.

Each of the following sets of seminorms

generate the same locally convex vector topology on (so for example, the topology generated by the seminorms in is equal to the topology generated by those in ).

The vector space is endowed with the locally convex topology induced by any one of the four families of seminorms described above. This topology is also equal to the vector topology induced by all of the seminorms in

With this topology, becomes a locally convex Fréchet space that is not normable. Every element of is a continuous seminorm on Under this topology, a net in converges to if and only if for every multi-index with and every compact the net of partial derivatives converges uniformly to on [3] For any any (von Neumann) bounded subset of is a relatively compact subset of [4] In particular, a subset of is bounded if and only if it is bounded in for all [4] The space is a Montel space if and only if [5]

The topology on is the superior limit of the subspace topologies induced on by the TVSs as i ranges over the non-negative integers.[3] A subset of is open in this topology if and only if there exists such that is open when is endowed with the subspace topology induced on it by

Metric defining the topology[edit]

If the family of compact sets satisfies and for all then a complete translation-invariant metric on can be obtained by taking a suitable countable Fréchet combination of any one of the above defining families of seminorms (A through D). For example, using the seminorms results in the metric

Often, it is easier to just consider seminorms (avoiding any metric) and use the tools of functional analysis.

Topology on Ck(K)[edit]

As before, fix Recall that if is any compact subset of then

Assumption: For any compact subset we will henceforth assume that is endowed with the subspace topology it inherits from the Fréchet space

For any compact subset is a closed subspace of the Fréchet space and is thus also a Fréchet space. For all compact satisfying denote the inclusion map by Then this map is a linear embedding of TVSs (that is, it is a linear map that is also a topological embedding) whose image (or "range") is closed in its codomain; said differently, the topology on is identical to the subspace topology it inherits from and also is a closed subset of The interior of relative to is empty.[6]

If is finite then is a Banach space[7] with a topology that can be defined by the norm

And when then is even a Hilbert space.[7] The space is a distinguished Schwartz Montel space so if then it is not normable and thus not a Banach space (although like all other it is a Fréchet space).

Trivial extensions and independence of Ck(K)'s topology from U[edit]

The definition of depends on U so we will let denote the topological space which by definition is a topological subspace of Suppose is an open subset of containing and for any compact subset let is the vector subspace of consisting of maps with support contained in Given its trivial extension to V is by definition, the function defined by:

so that Let denote the map that sends a function in to its trivial extension on V. This map is a linear injection and for every compact subset (where is also a compact subset of since ) we have
If I is restricted to then the following induced linear map is a homeomorphism (and thus a TVS-isomorphism):
and thus the next two maps (which like the previous map are defined by ) are topological embeddings:
(the topology on is the canonical LF topology, which is defined later). Using the injection
the vector space is canonically identified with its image in (however, if then is not a topological embedding when these spaces are endowed with their canonical LF topologies, although it is continuous).[8] Because through this identification, can also be considered as a subset of Importantly, the subspace topology inherits from (when it is viewed as a subset of ) is identical to the subspace topology that it inherits from (when is viewed instead as a subset of via the identification). Thus the topology on is independent of the open subset U of that contains K.[6] This justifies the practice of written instead of

Canonical LF topology[edit]

Recall that denote all those functions in that have compact support in where note that is the union of all as K ranges over Moreover, for every k, is a dense subset of The special case when gives us the space of test functions.

is called the space of test functions on and it may also be denoted by

This section defines the canonical LF topology as a direct limit. It is also possible to define this topology in terms of its neighborhoods of the origin, which is described afterwards.

Topology defined by direct limits[edit]

For any two sets K and L, we declare that if and only if which in particular makes the collection of compact subsets of U into a directed set (we say that such a collection is directed by subset inclusion). For all compact satisfying there are inclusion maps

Recall from above that the map is a topological embedding. The collection of maps

forms a direct system in the category of locally convex topological vector spaces that is directed by (under subset inclusion). This system's direct limit (in the category of locally convex TVSs) is the pair where are the natural inclusions and where is now endowed with the (unique) strongest locally convex topology making all of the inclusion maps continuous.

The canonical LF topology on is the finest locally convex topology on making all of the inclusion maps continuous (where K ranges over ).
As is common in mathematics literature, the space is henceforth assumed to be endowed with its canonical LF topology (unless explicitly stated otherwise).

Topology defined by neighborhoods of the origin[edit]

If U is a convex subset of then U is a neighborhood of the origin in the canonical LF topology if and only if it satisfies the following condition:

For all is a neighborhood of the origin in

(CN)

Note that any convex set satisfying this condition is necessarily absorbing in Since the topology of any topological vector space is translation-invariant, any TVS-topology is completely determined by the set of neighborhood of the origin. This means that one could actually define the canonical LF topology by declaring that a convex balanced subset U is a neighborhood of the origin if and only if it satisfies condition CN.

Topology defined via differential operators[edit]

A linear differential operator in U with smooth coefficients is a sum

where and all but finitely many of are identically 0. The integer is called the order of the differential operator If is a linear differential operator of order k then it induces a canonical linear map defined by where we shall reuse notation and also denote this map by [9]

For any the canonical LF topology on is the weakest locally convex TVS topology making all linear differential operators in of order into continuous maps from into [9]

Properties of the canonical LF topology[edit]

Canonical LF topology's independence from K[edit]

One benefit of defining the canonical LF topology as the direct limit of a direct system is that we may immediately use the universal property of direct limits. Another benefit is that we can use well-known results from category theory to deduce that the canonical LF topology is actually independent of the particular choice of the directed collection of compact sets. And by considering different collections (in particular, those mentioned at the beginning of this article), we may deduce different properties of this topology. In particular, we may deduce that the canonical LF topology makes into a Hausdorff locally convex strict LF-space (and also a strict LB-space if ), which of course is the reason why this topology is called "the canonical LF topology" (see this footnote for more details).[note 5]

Universal property[edit]

From the universal property of direct limits, we know that if is a linear map into a locally convex space Y (not necessarily Hausdorff), then u is continuous if and only if u is bounded if and only if for every the restriction of u to is continuous (or bounded).[10][11]

Dependence of the canonical LF topology on U[edit]

Suppose V is an open subset of containing Let denote the map that sends a function in to its trivial extension on V (which was defined above). This map is a continuous linear map.[8] If (and only if) then is not a dense subset of and is not a topological embedding.[8] Consequently, if then the transpose of is neither one-to-one nor onto.[8]

Bounded subsets[edit]

A subset is bounded in if and only if there exists some such that and is a bounded subset of [11] Moreover, if is compact and then is bounded in if and only if it is bounded in For any any bounded subset of (resp. ) is a relatively compact subset of (resp. ), where [11]

Non-metrizability[edit]

For all compact the interior of in is empty so that is of the first category in itself. It follows from Baire's theorem that is not metrizable and thus also not normable (see this footnote[note 6] for an explanation of how the non-metrizable space can be complete even though it does not admit a metric). The fact that is a nuclear Montel space makes up for the non-metrizability of (see this footnote for a more detailed explanation).[note 7]

Relationships between spaces[edit]

Using the universal property of direct limits and the fact that the natural inclusions are all topological embedding, one may show that all of the maps are also topological embeddings. Said differently, the topology on is identical to the subspace topology that it inherits from where recall that 's topology was defined to be the subspace topology induced on it by In particular, both and induces the same subspace topology on However, this does not imply that the canonical LF topology on is equal to the subspace topology induced on by ; these two topologies on are in fact never equal to each other since the canonical LF topology is never metrizable while the subspace topology induced on it by is metrizable (since recall that is metrizable). The canonical LF topology on is actually strictly finer than the subspace topology that it inherits from (thus the natural inclusion is continuous but not a topological embedding).[7]

Indeed, the canonical LF topology is so fine that if denotes some linear map that is a "natural inclusion" (such as or or other maps discussed below) then this map will typically be continuous, which (as is explained below) is ultimately the reason why locally integrable functions, Radon measures, etc. all induce distributions (via the transpose of such a "natural inclusion"). Said differently, the reason why there are so many different ways of defining distributions from other spaces ultimately stems from how very fine the canonical LF topology is. Moreover, since distributions are just continuous linear functionals on the fine nature of the canonical LF topology means that more linear functionals on end up being continuous ("more" means as compared to a coarser topology that we could have placed on such as for instance, the subspace topology induced by some which although it would have made metrizable, it would have also resulted in fewer linear functionals on being continuous and thus there would have been fewer distributions; moreover, this particular coarser topology also has the disadvantage of not making into a complete TVS[12]).

Other properties[edit]
  • The differentiation map is a surjective continuous linear operator.[13]
  • The bilinear multiplication map given by is not continuous; it is however, hypocontinuous.[14]

Distributions[edit]

As discussed earlier, continuous linear functionals on a are known as distributions on U. Thus the set of all distributions on U is the continuous dual space of which when endowed with the strong dual topology is denoted by

By definition, a distribution on U is defined to be a continuous linear functional on Said differently, a distribution on U is an element of the continuous dual space of when is endowed with its canonical LF topology.

We have the canonical duality pairing between a distribution T on U and a test function which is denoted using angle brackets by

One interprets this notation as the distribution T acting on the test function to give a scalar, or symmetrically as the test function acting on the distribution T.

Characterizations of distributions[edit]

Proposition. If T is a linear functional on then the following are equivalent:

  1. T is a distribution;
  2. Definition : T is a continuous function.
  3. T is continuous at the origin.
  4. T is uniformly continuous.
  5. T is a bounded operator.
  6. T is sequentially continuous.
    • explicitly, for every sequence in that converges in to some [note 8]
  7. T is sequentially continuous at the origin; in other words, T maps null sequences[note 9] to null sequences.
    • explicitly, for every sequence in that converges in to the origin (such a sequence is called a null sequence),
    • a null sequence is by definition a sequence that converges to the origin.
  8. T maps null sequences to bounded subsets.
    • explicitly, for every sequence in that converges in to the origin, the sequence is bounded.
  9. T maps Mackey convergent null sequences[note 10] to bounded subsets;
    • explicitly, for every Mackey convergent null sequence in