Let be a Hilbert space over a field where is either the real numbers or the complex numbers If (resp. if ) then is called a complex Hilbert space (resp. a real Hilbert space). Every real Hilbert space can be extended to be a dense subset of a unique (up to bijectiveisometry) complex Hilbert space, called its complexification, which is why Hilbert spaces are often automatically assumed to be complex. Real and complex Hilbert spaces have in common many, but by no means all, properties and results/theorems.
This article is intended for both mathematicians and physicists and will describe the theorem for both. In both mathematics and physics, if a Hilbert space is assumed to be real (that is, if ) then this will usually be made clear. Often in mathematics, and especially in physics, unless indicated otherwise, "Hilbert space" is usually automatically assumed to mean "complex Hilbert space." Depending on the author, in mathematics, "Hilbert space" usually means either (1) a complex Hilbert space, or (2) a real or complex Hilbert space.
By definition, an antilinear map (also called a conjugate-linear map) is a map between vector spaces that is additive: and antilinear (also called conjugate-linear or conjugate-homogeneous): where is the conjugate of the complex number , given by .
Every constant map is always both linear and antilinear. If then the definitions of linear maps and antilinear maps are completely identical. A linear map from a Hilbert space into a Banach space (or more generally, from any Banach space into any topological vector space) is continuous if and only if it is bounded; the same is true of antilinear maps. The inverse of any antilinear (resp. linear) bijection is again an antilinear (resp. linear) bijection. The composition of two antilinear maps is a linear map.
Continuous dual and anti-dual spaces
A functional on is a function whose codomain is the underlying scalar field Denote by (resp. by the set of all continuous linear (resp. continuous antilinear) functionals on which is called the (continuous) dual space (resp. the (continuous) anti-dual space) of [1] If then linear functionals on are the same as antilinear functionals and consequently, the same is true for such continuous maps: that is,
One-to-one correspondence between linear and antilinear functionals
Given any functional the conjugate of is the functional
This assignment is most useful when because if then and the assignment reduces down to the identity map.
The assignment defines an antilinear bijective correspondence from the set of
all functionals (resp. all linear functionals, all continuous linear functionals ) on
onto the set of
all functionals (resp. all antilinear functionals, all continuous antilinear functionals ) on
Mathematics vs. physics notations and definitions of inner product
The Hilbert space has an associated inner product valued in 's underlying scalar field that is linear in one coordinate and antilinear in the other (as specified below). If is a complex Hilbert space (), then there is a crucial difference between the notations prevailing in mathematics versus physics, regarding which of the two variables is linear. However, for real Hilbert spaces (), the inner product is a symmetric map that is linear in each coordinate (bilinear), so there can be no such confusion.
In mathematics, the inner product on a Hilbert space is often denoted by or while in physics, the bra–ket notation or is typically used. In this article, these two notations will be related by the equality:
These have the following properties:
The map is linear in its first coordinate; equivalently, the map is linear in its second coordinate. That is, for fixed the map with is a linear functional on This linear functional is continuous, so
The map is antilinear in its second coordinate; equivalently, the map is antilinear in its first coordinate. That is, for fixed the map with is an antilinear functional on This antilinear functional is continuous, so
In computations, one must consistently use either the mathematics notation , which is (linear, antilinear); or the physics notation , which is (antilinear | linear).
Canonical norm and inner product on the dual space and anti-dual space
defines a canonical norm on that makes into a normed space.[1] As with all normed spaces, the (continuous) dual space carries a canonical norm, called the dual norm, that is defined by[1]
The canonical norm on the (continuous) anti-dual space denoted by is defined by using this same equation:[1]
This canonical norm on satisfies the parallelogram law, which means that the polarization identity can be used to define a canonical inner product on which this article will denote by the notations where this inner product turns into a Hilbert space. There are now two ways of defining a norm on the norm induced by this inner product (that is, the norm defined by ) and the usual dual norm (defined as the supremum over the closed unit ball). These norms are the same; explicitly, this means that the following holds for every
As will be described later, the Riesz representation theorem can be used to give an equivalent definition of the canonical norm and the canonical inner product on
The same equations that were used above can also be used to define a norm and inner product on 's anti-dual space[1]
Canonical isometry between the dual and antidual
The complex conjugate of a functional which was defined above, satisfies for every and every This says exactly that the canonical antilinear bijection defined by as well as its inverse are antilinear isometries and consequently also homeomorphisms. The inner products on the dual space and the anti-dual space denoted respectively by and are related by and
If then and this canonical map reduces down to the identity map.
Riesz representation theorem—Let be a Hilbert space whose inner product is linear in its first argument and antilinear in its second argument and let be the corresponding physics notation. For every continuous linear functional there exists a unique vector called the Riesz representation of such that[3]
Importantly for complex Hilbert spaces, is always located in the antilinear coordinate of the inner product.[note 1]
Furthermore, the length of the representation vector is equal to the norm of the functional: and is the unique vector with It is also the unique element of minimum norm in ; that is to say, is the unique element of satisfying Moreover, any non-zero can be written as
The inner products on and are related by and similarly,
The set satisfies and so when then can be interpreted as being the affine hyperplane[note 3] that is parallel to the vector subspace and contains
For the physics notation for the functional is the bra where explicitly this means that which complements the ket notation defined by In the mathematical treatment of quantum mechanics, the theorem can be seen as a justification for the popular bra–ket notation. The theorem says that, every bra has a corresponding ket and the latter is unique.
Historically, the theorem is often attributed simultaneously to Riesz and Fréchet in 1907 (see references).
Fix Define by which is a linear functional on since is in the linear argument. By the Cauchy–Schwarz inequality, which shows that is bounded (equivalently, continuous) and that It remains to show that By using in place of it follows that (the equality holds because is real and non-negative). Thus that
The proof above did not use the fact that is complete, which shows that the formula for the norm holds more generally for all inner product spaces.
Proof that a Riesz representation of is unique:
Suppose are such that and for all Then which shows that is the constant linear functional. Consequently which implies that
Proof that a vector representing exists:
Let If (or equivalently, if ) then taking completes the proof so assume that and The continuity of implies that is a closed subspace of (because and is a closed subset of ). Let denote the orthogonal complement of in Because is closed and is a Hilbert space,[note 4] can be written as the direct sum [note 5] (a proof of this is given in the article on the Hilbert projection theorem). Because there exists some non-zero For any which shows that where now implies Solving for shows that which proves that the vector satisfies
Applying the norm formula that was proved above with shows that Also, the vector has norm and satisfies
It can now be deduced that is -dimensional when Let be any non-zero vector. Replacing with in the proof above shows that the vector satisfies for every The uniqueness of the (non-zero) vector representing implies that which in turn implies that and Thus every vector in is a scalar multiple of
If then So in particular, is always real and furthermore, if and only if if and only if
Linear functionals as affine hyperplanes
A non-trivial continuous linear functional is often interpreted geometrically by identifying it with the affine hyperplane (the kernel is also often visualized alongside although knowing is enough to reconstruct because if then and otherwise ). In particular, the norm of should somehow be interpretable as the "norm of the hyperplane ". When then the Riesz representation theorem provides such an interpretation of in terms of the affine hyperplane[note 3] as follows: using the notation from the theorem's statement, from it follows that and so implies and thus This can also be seen by applying the Hilbert projection theorem to and concluding that the global minimum point of the map defined by is The formulas provide the promised interpretation of the linear functional's norm entirely in terms of its associated affine hyperplane (because with this formula, knowing only the set is enough to describe the norm of its associated linear functional). Defining the infimum formula will also hold when When the supremum is taken in (as is typically assumed), then the supremum of the empty set is but if the supremum is taken in the non-negative reals (which is the image/range of the norm when ) then this supremum is instead in which case the supremum formula will also hold when (although the atypical equality is usually unexpected and so risks causing confusion).
Using the notation from the theorem above, several ways of constructing from are now described. If then ; in other words,
This special case of is henceforth assumed to be known, which is why some of the constructions given below start by assuming
Orthogonal complement of kernel
If then for any
If is a unit vector (meaning ) then (this is true even if because in this case ). If is a unit vector satisfying the above condition then the same is true of which is also a unit vector in However, so both these vectors result in the same
Given an orthonormal basis of and a continuous linear functional the vector can be constructed uniquely by where all but at most countably many will be equal to and where the value of does not actually depend on choice of orthonormal basis (that is, using any other orthonormal basis for will result in the same vector). If is written as then and
If the orthonormal basis is a sequence then this becomes and if is written as then
Example in finite dimensions using matrix transformations
Consider the special case of (where is an integer) with the standard inner product where are represented as column matrices and with respect to the standard orthonormal basis on (here, is at its th coordinate and everywhere else; as usual, will now be associated with the dual basis) and where denotes the conjugate transpose of Let be any linear functional and let be the unique scalars such that where it can be shown that for all Then the Riesz representation of is the vector To see why, identify every vector in with the column matrix so that is identified with As usual, also identify the linear functional with its transformation matrix, which is the row matrix so that and the function is the assignment where the right hand side is matrix multiplication. Then for all which shows that satisfies the defining condition of the Riesz representation of The bijective antilinear isometry defined in the corollary to the Riesz representation theorem is the assignment that sends to the linear functional on defined by where under the identification of vectors in with column matrices and vector in with row matrices, is just the assignment As described in the corollary, 's inverse is the antilinear isometry which was just shown above to be: where in terms of matrices, is the assignment Thus in terms of matrices, each of and is just the operation of conjugate transposition (although between different spaces of matrices: if is identified with the space of all column (respectively, row) matrices then