Tool in multivariate statistical analysis
In statistics , the Matérn covariance , also called the Matérn kernel ,[ 1] is a covariance function used in spatial statistics , geostatistics , machine learning , image analysis , and other applications of multivariate statistical analysis on metric spaces . It is named after the Swedish forestry statistician Bertil Matérn .[ 2] It specifies the covariance between two measurements as a function of the distance d {\displaystyle d} between the points at which they are taken. Since the covariance only depends on distances between points, it is stationary . If the distance is Euclidean distance , the Matérn covariance is also isotropic .
The Matérn covariance between measurements taken at two points separated by d distance units is given by [ 3]
C ν ( d ) = σ 2 2 1 − ν Γ ( ν ) ( 2 ν d ρ ) ν K ν ( 2 ν d ρ ) , {\displaystyle C_{\nu }(d)=\sigma ^{2}{\frac {2^{1-\nu }}{\Gamma (\nu )}}{{\Bigg (}{\sqrt {2\nu }}{\frac {d}{\rho }}{\Bigg )}}^{\nu }K_{\nu }{\Bigg (}{\sqrt {2\nu }}{\frac {d}{\rho }}{\Bigg )},} where Γ {\displaystyle \Gamma } is the gamma function , K ν {\displaystyle K_{\nu }} is the modified Bessel function of the second kind, and ρ and ν {\displaystyle \nu } are positive parameters of the covariance.
A Gaussian process with Matérn covariance is ⌈ ν ⌉ − 1 {\displaystyle \lceil \nu \rceil -1} times differentiable in the mean-square sense.[ 3] [ 4]
The power spectrum of a process with Matérn covariance defined on R n {\displaystyle \mathbb {R} ^{n}} is the (n -dimensional) Fourier transform of the Matérn covariance function (see Wiener–Khinchin theorem ). Explicitly, this is given by
S ( f ) = σ 2 2 n π n / 2 Γ ( ν + n 2 ) ( 2 ν ) ν Γ ( ν ) ρ 2 ν ( 2 ν ρ 2 + 4 π 2 f 2 ) − ( ν + n 2 ) . {\displaystyle S(f)=\sigma ^{2}{\frac {2^{n}\pi ^{n/2}\Gamma (\nu +{\frac {n}{2}})(2\nu )^{\nu }}{\Gamma (\nu )\rho ^{2\nu }}}\left({\frac {2\nu }{\rho ^{2}}}+4\pi ^{2}f^{2}\right)^{-\left(\nu +{\frac {n}{2}}\right)}.} [ 3] Simplification for specific values of ν [ edit ] Simplification for ν half integer[ edit ] When ν = p + 1 / 2 , p ∈ N + {\displaystyle \nu =p+1/2,\ p\in \mathbb {N} ^{+}} , the Matérn covariance can be written as a product of an exponential and a polynomial of degree p {\displaystyle p} .[ 5] [ 6] The modified Bessel function of a fractional order is given by Equations 10.1.9 and 10.2.15[ 7] as
π 2 z K p + 1 / 2 ( z ) = π 2 z e − z ∑ k = 0 n ( n + k ) ! k ! Γ ( n − k + 1 ) ( 2 z ) − k {\displaystyle {\sqrt {\frac {\pi }{2z}}}K_{p+1/2}(z)={\frac {\pi }{2z}}e^{-z}\sum _{k=0}^{n}{\frac {(n+k)!}{k!\Gamma (n-k+1)}}\left(2z\right)^{-k}} .
This allows for the Matérn covariance of half-integer values of ν {\displaystyle \nu } to be expressed as
C p + 1 / 2 ( d ) = σ 2 exp ( − 2 p + 1 d ρ ) p ! ( 2 p ) ! ∑ i = 0 p ( p + i ) ! i ! ( p − i ) ! ( 2 2 p + 1 d ρ ) p − i , {\displaystyle C_{p+1/2}(d)=\sigma ^{2}\exp \left(-{\frac {{\sqrt {2p+1}}d}{\rho }}\right){\frac {p!}{(2p)!}}\sum _{i=0}^{p}{\frac {(p+i)!}{i!(p-i)!}}\left({\frac {2{\sqrt {2p+1}}d}{\rho }}\right)^{p-i},}
which gives:
for ν = 1 / 2 ( p = 0 ) {\displaystyle \nu =1/2\ (p=0)} : C 1 / 2 ( d ) = σ 2 exp ( − d ρ ) , {\displaystyle C_{1/2}(d)=\sigma ^{2}\exp \left(-{\frac {d}{\rho }}\right),} for ν = 3 / 2 ( p = 1 ) {\displaystyle \nu =3/2\ (p=1)} : C 3 / 2 ( d ) = σ 2 ( 1 + 3 d ρ ) exp ( − 3 d ρ ) , {\displaystyle C_{3/2}(d)=\sigma ^{2}\left(1+{\frac {{\sqrt {3}}d}{\rho }}\right)\exp \left(-{\frac {{\sqrt {3}}d}{\rho }}\right),} for ν = 5 / 2 ( p = 2 ) {\displaystyle \nu =5/2\ (p=2)} : C 5 / 2 ( d ) = σ 2 ( 1 + 5 d ρ + 5 d 2 3 ρ 2 ) exp ( − 5 d ρ ) . {\displaystyle C_{5/2}(d)=\sigma ^{2}\left(1+{\frac {{\sqrt {5}}d}{\rho }}+{\frac {5d^{2}}{3\rho ^{2}}}\right)\exp \left(-{\frac {{\sqrt {5}}d}{\rho }}\right).} The Gaussian case in the limit of infinite ν [ edit ] As ν → ∞ {\displaystyle \nu \rightarrow \infty } , the Matérn covariance converges to the squared exponential covariance function
lim ν → ∞ C ν ( d ) = σ 2 exp ( − d 2 2 ρ 2 ) . {\displaystyle \lim _{\nu \rightarrow \infty }C_{\nu }(d)=\sigma ^{2}\exp \left(-{\frac {d^{2}}{2\rho ^{2}}}\right).} Taylor series at zero and spectral moments [ edit ] From the basic relation satisfied by the Gamma function Γ ( z ) Γ ( 1 − z ) = π sin ( π z ) {\displaystyle \Gamma (z)\Gamma (1-z)={\frac {\pi }{\sin(\pi z)}}} and the basic relation satisfied by the Modified Bessel Function of the second
K ν ( x ) = π 2 I − ν ( x ) − I ν ( x ) sin ( π ν ) {\displaystyle K_{\nu }(x)={\frac {\pi }{2}}{\frac {I_{-\nu }(x)-I_{\nu }(x)}{\sin(\pi \nu )}}}
and the definition of the modified Bessel functions of the first I ν ( x ) = ∑ m = 0 ∞ 1 m ! Γ ( m + ν + 1 ) ( x 2 ) 2 m + ν , {\displaystyle I_{\nu }(x)=\sum _{m=0}^{\infty }{\frac {1}{m!\,\Gamma (m+\nu +1)}}\left({\frac {x}{2}}\right)^{2m+\nu },}
the behavior for d → 0 {\displaystyle d\rightarrow 0} can be obtained by the following Taylor series (when ν {\displaystyle \nu } is not an integer and bigger than 2):
C ν ( d ) = σ 2 ( 1 + ν 2 ( 1 − ν ) ( d ρ ) 2 + ν 2 8 ( 2 − 3 ν + ν 2 ) ( d ρ ) 4 + O ( d 6 ∧ ( 2 ν ) ) ) , ν > 2. {\displaystyle C_{\nu }(d)=\sigma ^{2}\left(1+{\frac {\nu }{2(1-\nu )}}\left({\frac {d}{\rho }}\right)^{2}+{\frac {\nu ^{2}}{8(2-3\nu +\nu ^{2})}}\left({\frac {d}{\rho }}\right)^{4}+{\mathcal {O}}\left(d^{6\wedge (2\nu )}\right)\right),\,\,\nu >2.} [ 8]
When defined, the following spectral moments can be derived from the Taylor series:
λ 0 = C ν ( 0 ) = σ 2 , λ 2 = − ∂ 2 C ν ( d ) ∂ d 2 | d = 0 = σ 2 ν ρ 2 ( ν − 1 ) . {\displaystyle {\begin{aligned}\lambda _{0}&=C_{\nu }(0)=\sigma ^{2},\\[8pt]\lambda _{2}&=-\left.{\frac {\partial ^{2}C_{\nu }(d)}{\partial d^{2}}}\right|_{d=0}={\frac {\sigma ^{2}\nu }{\rho ^{2}(\nu -1)}}.\end{aligned}}} For the case of ν ∈ ( 0 , 1 ) ∪ ( 1 , 2 ) {\displaystyle \nu \in (0,1)\cup (1,2)} , similar Taylor series can be obtained: C ν ( d ) = σ 2 ( 1 + ν 2 ( 1 − ν ) ( d ρ ) 2 − Γ ( 1 − ν ) Γ ( 1 + ν ) ( ν 2 ) ν ( d ρ ) 2 ν + O ( d 4 ∧ ( 2 ν + 2 ) ) ) , ν ∈ ( 0 , 1 ) ∪ ( 1 , 2 ) . {\displaystyle C_{\nu }(d)=\sigma ^{2}\left(1+{\frac {\nu }{2(1-\nu )}}\left({\frac {d}{\rho }}\right)^{2}-{\frac {\Gamma (1-\nu )}{\Gamma (1+\nu )}}\left({\frac {\nu }{2}}\right)^{\nu }\left({\frac {d}{\rho }}\right)^{2\nu }+{\mathcal {O}}\left(d^{4\wedge (2\nu +2)}\right)\right),\,\,\nu \in (0,1)\cup (1,2).} When ν {\displaystyle \nu } is an integer limiting values should be taken, (see [ 8] ).
^ Genton, Marc G. (1 March 2002). "Classes of kernels for machine learning: a statistics perspective" . The Journal of Machine Learning Research . 2 : 303– 304. ^ Minasny, B.; McBratney, A. B. (2005). "The Matérn function as a general model for soil variograms". Geoderma . 128 (3– 4): 192– 207. doi :10.1016/j.geoderma.2005.04.003 . ^ a b c Rasmussen, Carl Edward and Williams, Christopher K. I. (2006) Gaussian Processes for Machine Learning ^ Santner, T. J., Williams, B. J., & Notz, W. I. (2013). The design and analysis of computer experiments. Springer Science & Business Media. ^ Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer Series in Statistics. ^ Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December. ^ Abramowitz and Stegun (1965). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . U.S. Government Printing Office. ISBN 0-486-61272-4 . ^ a b Cheng, Dan (July 2024). "Smooth Matérn Gaussian random fields: Euler characteristic, expected number and height distribution of critical points". Statistics & Probability Letters . 210 : 110116. arXiv :2307.01978 . doi :10.1016/j.spl.2024.110116 .