Collective name of 6 mathematical functions
"Hyperbolic curve" redirects here. For the geometric curve, see
Hyperbola .
In mathematics , hyperbolic functions are analogues of the ordinary trigonometric functions , but defined using the hyperbola rather than the circle . Just as the points (cos t , sin t ) form a circle with a unit radius , the points (cosh t , sinh t ) form the right half of the unit hyperbola . Also, similarly to how the derivatives of sin(t ) and cos(t ) are cos(t ) and –sin(t ) respectively, the derivatives of sinh(t ) and cosh(t ) are cosh(t ) and sinh(t ) respectively.
Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry . They are used to express Lorentz boosts as hyperbolic rotations in special relativity . They also occur in the solutions of many linear differential equations (such as the equation defining a catenary ), cubic equations , and Laplace's equation in Cartesian coordinates . Laplace's equations are important in many areas of physics , including electromagnetic theory , heat transfer , and fluid dynamics .
The basic hyperbolic functions are:[ 1]
hyperbolic sine "sinh " (),[ 2] hyperbolic cosine "cosh " (),[ 3] from which are derived:[ 4]
hyperbolic tangent "tanh " (),[ 5] hyperbolic cotangent "coth " (),[ 6] [ 7] hyperbolic secant "sech " (),[ 8] hyperbolic cosecant "csch " or "cosech " ([ 3] ) corresponding to the derived trigonometric functions.
The inverse hyperbolic functions are:
inverse hyperbolic sine "arsinh " (also denoted "sinh−1 ", "asinh " or sometimes "arcsinh ")[ 9] [ 10] [ 11] inverse hyperbolic cosine "arcosh " (also denoted "cosh−1 ", "acosh " or sometimes "arccosh ") inverse hyperbolic tangent "artanh " (also denoted "tanh−1 ", "atanh " or sometimes "arctanh ") inverse hyperbolic cotangent "arcoth " (also denoted "coth−1 ", "acoth " or sometimes "arccoth ") inverse hyperbolic secant "arsech " (also denoted "sech−1 ", "asech " or sometimes "arcsech ") inverse hyperbolic cosecant "arcsch " (also denoted "arcosech ", "csch−1 ", "cosech−1 ","acsch ", "acosech ", or sometimes "arccsch " or "arccosech ") A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a , sinh a ) , where a is twice the area between the ray, the hyperbola, and the x -axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions). The hyperbolic functions take a real argument called a hyperbolic angle . The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.
In complex analysis , the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions . As a result, the other hyperbolic functions are meromorphic in the whole complex plane.
By Lindemann–Weierstrass theorem , the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.[ 12]
The first known calculation of a hyperbolic trigonometry problem is attributed to Gerardus Mercator when issuing the Mercator map projection circa 1566. It requires tabulating solutions to a transcendental equation involving hyperbolic functions.[ 13]
The first to suggest a similarity between the sector of the circle and that of the hyperbola was Isaac Newton in his 1687 Principia Mathematica .[ 14]
Roger Cotes suggested to modify the trigonometric functions using the imaginary unit i = − 1 {\displaystyle i={\sqrt {-1}}} to obtain an oblate spheroid from a prolate one.[ 14]
Hyperbolic functions were formally introduced in 1757 by Vincenzo Riccati .[ 14] [ 13] [ 15] Riccati used Sc. and Cc. (sinus/cosinus circulare ) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico ) to refer to hyperbolic functions.[ 14] As early as 1759, Daviet de Foncenex showed the interchangeability of the trigonometric and hyperbolic functions using the imaginary unit and extended de Moivre's formula to hyperbolic functions.[ 15] [ 14]
During the 1760s, Johann Heinrich Lambert systematized the use functions and provided exponential expressions in various publications.[ 14] [ 15] Lambert credited Riccati for the terminology and names of the functions, but altered the abbreviations to those used today.[ 15] [ 16]
sinh , cosh and tanh csch , sech and coth There are various equivalent ways to define the hyperbolic functions.
Exponential definitions [ edit ] sinh x is half the difference of ex and e −x cosh x is the average of ex and e −x In terms of the exponential function :[ 1] [ 4]
Hyperbolic sine: the odd part of the exponential function, that is, sinh x = e x − e − x 2 = e 2 x − 1 2 e x = 1 − e − 2 x 2 e − x . {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}={\frac {1-e^{-2x}}{2e^{-x}}}.} Hyperbolic cosine: the even part of the exponential function, that is, cosh x = e x + e − x 2 = e 2 x + 1 2 e x = 1 + e − 2 x 2 e − x . {\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}={\frac {1+e^{-2x}}{2e^{-x}}}.} Hyperbolic tangent: tanh x = sinh x cosh x = e x − e − x e x + e − x = e 2 x − 1 e 2 x + 1 . {\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}.} Hyperbolic cotangent: for x ≠ 0 , coth x = cosh x sinh x = e x + e − x e x − e − x = e 2 x + 1 e 2 x − 1 . {\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}.} Hyperbolic secant: sech x = 1 cosh x = 2 e x + e − x = 2 e x e 2 x + 1 . {\displaystyle \operatorname {sech} x={\frac {1}{\cosh x}}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}.} Hyperbolic cosecant: for x ≠ 0 , csch x = 1 sinh x = 2 e x − e − x = 2 e x e 2 x − 1 . {\displaystyle \operatorname {csch} x={\frac {1}{\sinh x}}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}.} Differential equation definitions [ edit ] The hyperbolic functions may be defined as solutions of differential equations : The hyperbolic sine and cosine are the solution (s , c ) of the system c ′ ( x ) = s ( x ) , s ′ ( x ) = c ( x ) , {\displaystyle {\begin{aligned}c'(x)&=s(x),\\s'(x)&=c(x),\\\end{aligned}}} with the initial conditions s ( 0 ) = 0 , c ( 0 ) = 1. {\displaystyle s(0)=0,c(0)=1.} The initial conditions make the solution unique; without them any pair of functions ( a e x + b e − x , a e x − b e − x ) {\displaystyle (ae^{x}+be^{-x},ae^{x}-be^{-x})} would be a solution.
sinh(x ) and cosh(x ) are also the unique solution of the equation f ″(x ) = f (x ) , such that f (0) = 1 , f ′(0) = 0 for the hyperbolic cosine, and f (0) = 0 , f ′(0) = 1 for the hyperbolic sine.
Complex trigonometric definitions [ edit ] Hyperbolic functions may also be deduced from trigonometric functions with complex arguments:
Hyperbolic sine:[ 1] sinh x = − i sin ( i x ) . {\displaystyle \sinh x=-i\sin(ix).} Hyperbolic cosine:[ 1] cosh x = cos ( i x ) . {\displaystyle \cosh x=\cos(ix).} Hyperbolic tangent: tanh x = − i tan ( i x ) . {\displaystyle \tanh x=-i\tan(ix).} Hyperbolic cotangent: coth x = i cot ( i x ) . {\displaystyle \coth x=i\cot(ix).} Hyperbolic secant: sech x = sec ( i x ) . {\displaystyle \operatorname {sech} x=\sec(ix).} Hyperbolic cosecant: csch x = i csc ( i x ) . {\displaystyle \operatorname {csch} x=i\csc(ix).} where i is the imaginary unit with i 2 = −1 .
The above definitions are related to the exponential definitions via Euler's formula (See § Hyperbolic functions for complex numbers below).
Characterizing properties [ edit ] It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval:[ 17] area = ∫ a b cosh x d x = ∫ a b 1 + ( d d x cosh x ) 2 d x = arc length. {\displaystyle {\text{area}}=\int _{a}^{b}\cosh x\,dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh x\right)^{2}}}\,dx={\text{arc length.}}}
The hyperbolic tangent is the (unique) solution to the differential equation f ′ = 1 − f 2 , with f (0) = 0 .[ 18] [ 19]
The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities . In fact, Osborn's rule [ 20] states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for θ {\displaystyle \theta } , 2 θ {\displaystyle 2\theta } , 3 θ {\displaystyle 3\theta } or θ {\displaystyle \theta } and φ {\displaystyle \varphi } into a hyperbolic identity, by:
expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term containing a product of two sinhs. Odd and even functions: sinh ( − x ) = − sinh x cosh ( − x ) = cosh x {\displaystyle {\begin{aligned}\sinh(-x)&=-\sinh x\\\cosh(-x)&=\cosh x\end{aligned}}}
Hence: tanh ( − x ) = − tanh x coth ( − x ) = − coth x sech ( − x ) = sech x csch ( − x ) = − csch x {\displaystyle {\begin{aligned}\tanh(-x)&=-\tanh x\\\coth(-x)&=-\coth x\\\operatorname {sech} (-x)&=\operatorname {sech} x\\\operatorname {csch} (-x)&=-\operatorname {csch} x\end{aligned}}}
Thus, cosh x and sech x are even functions ; the others are odd functions .
arsech x = arcosh ( 1 x ) arcsch x = arsinh ( 1 x ) arcoth x = artanh ( 1 x ) {\displaystyle {\begin{aligned}\operatorname {arsech} x&=\operatorname {arcosh} \left({\frac {1}{x}}\right)\\\operatorname {arcsch} x&=\operatorname {arsinh} \left({\frac {1}{x}}\right)\\\operatorname {arcoth} x&=\operatorname {artanh} \left({\frac {1}{x}}\right)\end{aligned}}}
Hyperbolic sine and cosine satisfy: cosh x + sinh x = e x cosh x − sinh x = e − x {\displaystyle {\begin{aligned}\cosh x+\sinh x&=e^{x}\\\cosh x-\sinh x&=e^{-x}\end{aligned}}}
which are analogous to Euler's formula , and
cosh 2 x − sinh 2 x = 1 {\displaystyle \cosh ^{2}x-\sinh ^{2}x=1}
which is analogous to the Pythagorean trigonometric identity .
One also has sech 2 x = 1 − tanh 2 x csch 2 x = coth 2 x − 1 {\displaystyle {\begin{aligned}\operatorname {sech} ^{2}x&=1-\tanh ^{2}x\\\operatorname {csch} ^{2}x&=\coth ^{2}x-1\end{aligned}}}
for the other functions.
sinh ( x + y ) = sinh x cosh y + cosh x sinh y cosh ( x + y ) = cosh x cosh y + sinh x sinh y tanh ( x + y ) = tanh x + tanh y 1 + tanh x tanh y {\displaystyle {\begin{aligned}\sinh(x+y)&=\sinh x\cosh y+\cosh x\sinh y\\\cosh(x+y)&=\cosh x\cosh y+\sinh x\sinh y\\\tanh(x+y)&={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\\\end{aligned}}} particularly cosh ( 2 x ) = sinh 2 x + cosh 2 x = 2 sinh 2 x + 1 = 2 cosh 2 x − 1 sinh ( 2 x ) = 2 sinh x cosh x tanh ( 2 x ) = 2 tanh x 1 + tanh 2 x {\displaystyle {\begin{aligned}\cosh(2x)&=\sinh ^{2}{x}+\cosh ^{2}{x}=2\sinh ^{2}x+1=2\cosh ^{2}x-1\\\sinh(2x)&=2\sinh x\cosh x\\\tanh(2x)&={\frac {2\tanh x}{1+\tanh ^{2}x}}\\\end{aligned}}}
Also: sinh x + sinh y = 2 sinh ( x + y 2 ) cosh ( x − y 2 ) cosh x + cosh y = 2 cosh ( x + y 2 ) cosh ( x − y 2 ) {\displaystyle {\begin{aligned}\sinh x+\sinh y&=2\sinh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\cosh x+\cosh y&=2\cosh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}
sinh ( x − y ) = sinh x cosh y − cosh x sinh y cosh ( x − y ) = cosh x cosh y − sinh x sinh y tanh ( x − y ) = tanh x − tanh y 1 − tanh x tanh y {\displaystyle {\begin{aligned}\sinh(x-y)&=\sinh x\cosh y-\cosh x\sinh y\\\cosh(x-y)&=\cosh x\cosh y-\sinh x\sinh y\\\tanh(x-y)&={\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}\\\end{aligned}}}
Also:[ 21] sinh x − sinh y = 2 cosh ( x + y 2 ) sinh ( x − y 2 ) cosh x − cosh y = 2 sinh ( x + y 2 ) sinh ( x − y 2 ) {\displaystyle {\begin{aligned}\sinh x-\sinh y&=2\cosh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\cosh x-\cosh y&=2\sinh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}
sinh ( x 2 ) = sinh x 2 ( cosh x + 1 ) = sgn x cosh x − 1 2 cosh ( x 2 ) = cosh x + 1 2 tanh ( x 2 ) = sinh x cosh x + 1 = sgn x cosh x − 1 cosh x + 1 = e x − 1 e x + 1 {\displaystyle {\begin{aligned}\sinh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\sqrt {2(\cosh x+1)}}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{2}}}\\[6px]\cosh \left({\frac {x}{2}}\right)&={\sqrt {\frac {\cosh x+1}{2}}}\\[6px]\tanh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\cosh x+1}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{\cosh x+1}}}={\frac {e^{x}-1}{e^{x}+1}}\end{aligned}}}
where sgn is the sign function .
If x ≠ 0 , then[ 22]
tanh ( x 2 ) = cosh x − 1 sinh x = coth x − csch x {\displaystyle \tanh \left({\frac {x}{2}}\right)={\frac {\cosh x-1}{\sinh x}}=\coth x-\operatorname {csch} x}
sinh 2 x = 1 2 ( cosh 2 x − 1 ) cosh 2 x = 1 2 ( cosh 2 x + 1 ) {\displaystyle {\begin{aligned}\sinh ^{2}x&={\tfrac {1}{2}}(\cosh 2x-1)\\\cosh ^{2}x&={\tfrac {1}{2}}(\cosh 2x+1)\end{aligned}}}
The following inequality is useful in statistics:[ 23] cosh ( t ) ≤ e t 2 / 2 . {\displaystyle \operatorname {cosh} (t)\leq e^{t^{2}/2}.}
It can be proved by comparing the Taylor series of the two functions term by term.
Inverse functions as logarithms [ edit ] arsinh ( x ) = ln ( x + x 2 + 1 ) arcosh ( x ) = ln ( x + x 2 − 1 ) x ≥ 1 artanh ( x ) = 1 2 ln ( 1 + x 1 − x ) | x | < 1 arcoth ( x ) = 1 2 ln ( x + 1 x − 1 ) | x | > 1 arsech ( x ) = ln ( 1 x + 1 x 2 − 1 ) = ln ( 1 + 1 − x 2 x ) 0 < x ≤ 1 arcsch ( x ) = ln ( 1 x + 1 x 2 + 1 ) x ≠ 0 {\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right)&&x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)&&|x|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)&&|x|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}-1}}\right)=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)&&0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}+1}}\right)&&x\neq 0\end{aligned}}}
d d x sinh x = cosh x d d x cosh x = sinh x d d x tanh x = 1 − tanh 2 x = sech 2 x = 1 cosh 2 x d d x coth x = 1 − coth 2 x = − csch 2 x = − 1 sinh 2 x x ≠ 0 d d x sech x = − tanh x sech x d d x csch x = − coth x csch x x ≠ 0 {\displaystyle {\begin{aligned}{\frac {d}{dx}}\sinh x&=\cosh x\\{\frac {d}{dx}}\cosh x&=\sinh x\\{\frac {d}{dx}}\tanh x&=1-\tanh ^{2}x=\operatorname {sech} ^{2}x={\frac {1}{\cosh ^{2}x}}\\{\frac {d}{dx}}\coth x&=1-\coth ^{2}x=-\operatorname {csch} ^{2}x=-{\frac {1}{\sinh ^{2}x}}&&x\neq 0\\{\frac {d}{dx}}\operatorname {sech} x&=-\tanh x\operatorname {sech} x\\{\frac {d}{dx}}\operatorname {csch} x&=-\coth x\operatorname {csch} x&&x\neq 0\end{aligned}}} d d x arsinh x = 1 x 2 + 1 d d x arcosh x = 1 x 2 − 1 1 < x d d x artanh x = 1 1 − x 2 | x | < 1 d d x arcoth x = 1 1 − x 2 1 < | x | d d x arsech x = − 1 x 1 − x 2 0 < x < 1 d d x arcsch x = − 1 | x | 1 + x 2 x ≠ 0 {\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} x&={\frac {1}{\sqrt {x^{2}+1}}}\\{\frac {d}{dx}}\operatorname {arcosh} x&={\frac {1}{\sqrt {x^{2}-1}}}&&1<x\\{\frac {d}{dx}}\operatorname {artanh} x&={\frac {1}{1-x^{2}}}&&|x|<1\\{\frac {d}{dx}}\operatorname {arcoth} x&={\frac {1}{1-x^{2}}}&&1<|x|\\{\frac {d}{dx}}\operatorname {arsech} x&=-{\frac {1}{x{\sqrt {1-x^{2}}}}}&&0<x<1\\{\frac {d}{dx}}\operatorname {arcsch} x&=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}&&x\neq 0\end{aligned}}}
Each of the functions sinh and cosh is equal to its second derivative , that is: d 2 d x 2 sinh x = sinh x {\displaystyle {\frac {d^{2}}{dx^{2}}}\sinh x=\sinh x} d 2 d x 2 cosh x = cosh x . {\displaystyle {\frac {d^{2}}{dx^{2}}}\cosh x=\cosh x\,.}
All functions with this property are linear combinations of sinh and cosh , in particular the exponential functions e x {\displaystyle e^{x}} and e − x {\displaystyle e^{-x}} .[ 24]
∫ sinh ( a x ) d x = a − 1 cosh ( a x ) + C ∫ cosh ( a x ) d x = a − 1 sinh ( a x ) + C ∫ tanh ( a x ) d x = a − 1 ln ( cosh ( a x ) ) + C ∫ coth ( a x ) d x = a − 1 ln | sinh ( a x ) | + C ∫ sech ( a x ) d x = a − 1 arctan ( sinh ( a x ) ) + C ∫ csch ( a x ) d x = a − 1 ln | tanh ( a x 2 ) | + C = a − 1 ln | coth ( a x ) − csch ( a x ) | + C = − a − 1 arcoth ( cosh ( a x ) ) + C {\displaystyle {\begin{aligned}\int \sinh(ax)\,dx&=a^{-1}\cosh(ax)+C\\\int \cosh(ax)\,dx&=a^{-1}\sinh(ax)+C\\\int \tanh(ax)\,dx&=a^{-1}\ln(\cosh(ax))+C\\\int \coth(ax)\,dx&=a^{-1}\ln \left|\sinh(ax)\right|+C\\\int \operatorname {sech} (ax)\,dx&=a^{-1}\arctan(\sinh(ax))+C\\\int \operatorname {csch} (ax)\,dx&=a^{-1}\ln \left|\tanh \left({\frac {ax}{2}}\right)\right|+C=a^{-1}\ln \left|\coth \left(ax\right)-\operatorname {csch} \left(ax\right)\right|+C=-a^{-1}\operatorname {arcoth} \left(\cosh \left(ax\right)\right)+C\end{aligned}}}
The following integrals can be proved using hyperbolic substitution : ∫ 1 a 2 + u 2 d u = arsinh ( u a ) + C ∫ 1 u 2 − a 2 d u = sgn u arcosh | u a | + C ∫ 1 a 2 − u 2 d u = a − 1 artanh ( u a ) + C u 2 < a 2 ∫ 1 a 2 − u 2 d u = a − 1 arcoth ( u a ) + C u 2 > a 2 ∫ 1 u a 2 − u 2 d u = − a − 1 arsech | u a | + C ∫ 1 u a 2 + u 2 d u = − a − 1 arcsch | u a | + C {\displaystyle {\begin{aligned}\int {{\frac {1}{\sqrt {a^{2}+u^{2}}}}\,du}&=\operatorname {arsinh} \left({\frac {u}{a}}\right)+C\\\int {{\frac {1}{\sqrt {u^{2}-a^{2}}}}\,du}&=\operatorname {sgn} {u}\operatorname {arcosh} \left|{\frac {u}{a}}\right|+C\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {artanh} \left({\frac {u}{a}}\right)+C&&u^{2}<a^{2}\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {arcoth} \left({\frac {u}{a}}\right)+C&&u^{2}>a^{2}\\\int {{\frac {1}{u{\sqrt {a^{2}-u^{2}}}}}\,du}&=-a^{-1}\operatorname {arsech} \left|{\frac {u}{a}}\right|+C\\\int {{\frac {1}{u{\sqrt {a^{2}+u^{2}}}}}\,du}&=-a^{-1}\operatorname {arcsch} \left|{\frac {u}{a}}\right|+C\end{aligned}}}
where C is the constant of integration .
Taylor series expressions [ edit ] It is possible to express explicitly the Taylor series at zero (or the Laurent series , if the function is not defined at zero) of the above functions.
sinh x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}} This series is convergent for every complex value of x . Since the function sinh x is odd , only odd exponents for x occur in its Taylor series.
cosh x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ x 2 n ( 2 n ) ! {\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}} This series is convergent for every complex value of x . Since the function cosh x is even , only even exponents for x occur in its Taylor series.
The sum of the sinh and cosh series is the infinite series expression of the exponential function .
The following series are followed by a description of a subset of their domain of convergence , where the series is convergent and its sum equals the function. tanh x = x − x 3 3 + 2 x 5 15 − 17 x 7 315 + ⋯ = ∑ n = 1 ∞ 2 2 n ( 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! , | x | < π 2 coth x = x − 1 + x 3 − x 3 45 + 2 x 5 945 + ⋯ = ∑ n = 0 ∞ 2 2 n B 2 n x 2 n − 1 ( 2 n ) ! , 0 < | x | < π sech x = 1 − x 2 2 + 5 x 4 24 − 61 x 6 720 + ⋯ = ∑ n = 0 ∞ E 2 n x 2 n ( 2 n ) ! , | x | < π 2 csch x = x − 1 − x 6 + 7 x 3 360 − 31 x 5 15120 + ⋯ = ∑ n = 0 ∞ 2 ( 1 − 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! , 0 < | x | < π {\displaystyle {\begin{aligned}\tanh x&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\coth x&=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =\sum _{n=0}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \\\operatorname {sech} x&=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\operatorname {csch} x&=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =\sum _{n=0}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \end{aligned}}}
where:
Infinite products and continued fractions [ edit ] The following expansions are valid in the whole complex plane:
sinh x = x ∏ n = 1 ∞ ( 1 + x 2 n 2 π 2 ) = x 1 − x 2 2 ⋅ 3 + x 2 − 2 ⋅ 3 x 2 4 ⋅ 5 + x 2 − 4 ⋅ 5 x 2 6 ⋅ 7 + x 2 − ⋱ {\displaystyle \sinh x=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3x^{2}}{4\cdot 5+x^{2}-{\cfrac {4\cdot 5x^{2}}{6\cdot 7+x^{2}-\ddots }}}}}}}}} cosh x = ∏ n = 1 ∞ ( 1 + x 2 ( n − 1 / 2 ) 2 π 2 ) = 1 1 − x 2 1 ⋅ 2 + x 2 − 1 ⋅ 2 x 2 3 ⋅ 4 + x 2 − 3 ⋅ 4 x 2 5 ⋅ 6 + x 2 − ⋱ {\displaystyle \cosh x=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{(n-1/2)^{2}\pi ^{2}}}\right)={\cfrac {1}{1-{\cfrac {x^{2}}{1\cdot 2+x^{2}-{\cfrac {1\cdot 2x^{2}}{3\cdot 4+x^{2}-{\cfrac {3\cdot 4x^{2}}{5\cdot 6+x^{2}-\ddots }}}}}}}}} tanh x = 1 1 x + 1 3 x + 1 5 x + 1 7 x + ⋱ {\displaystyle \tanh x={\cfrac {1}{{\cfrac {1}{x}}+{\cfrac {1}{{\cfrac {3}{x}}+{\cfrac {1}{{\cfrac {5}{x}}+{\cfrac {1}{{\cfrac {7}{x}}+\ddots }}}}}}}}} Comparison with circular functions [ edit ] Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u . The hyperbolic functions represent an expansion of trigonometry beyond the circular functions . Both types depend on an argument , either circular angle or hyperbolic angle .
Since the area of a circular sector with radius r and angle u (in radians) is r 2 u /2 , it will be equal to u when r = √2 . In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.
The hyperbolic angle is an invariant measure with respect to the squeeze mapping , just as the circular angle is invariant under rotation.[ 25]
The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.
The graph of the function a cosh(x /a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.
Relationship to the exponential function [ edit ] The decomposition of the exponential function in its even and odd parts gives the identities e x = cosh x + sinh x , {\displaystyle e^{x}=\cosh x+\sinh x,} and e − x = cosh x − sinh x . {\displaystyle e^{-x}=\cosh x-\sinh x.} Combined with Euler's formula e i x = cos x + i sin x , {\displaystyle e^{ix}=\cos x+i\sin x,} this gives e x + i y = ( cosh x + sinh x ) ( cos y + i sin y ) {\displaystyle e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)} for the general complex exponential function .
Additionally, e x = 1 + tanh x 1 − tanh x = 1 + tanh x 2 1 − tanh x 2 {\displaystyle e^{x}={\sqrt {\frac {1+\tanh x}{1-\tanh x}}}={\frac {1+\tanh {\frac {x}{2}}}{1-\tanh {\frac {x}{2}}}}}
Hyperbolic functions for complex numbers [ edit ] Hyperbolic functions in the complex plane sinh ( z ) {\displaystyle \sinh(z)} cosh ( z ) {\displaystyle \cosh(z)} tanh ( z ) {\displaystyle \tanh(z)} coth ( z ) {\displaystyle \coth(z)} sech ( z ) {\displaystyle \operatorname {sech} (z)} csch ( z ) {\displaystyle \operatorname {csch} (z)}
Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z and cosh z are then holomorphic .
Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers: e i x = cos x + i sin x e − i x = cos x − i sin x {\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\sin x\\e^{-ix}&=\cos x-i\sin x\end{aligned}}} so: cosh ( i x ) = 1 2 ( e i x + e − i x ) = cos x sinh ( i x ) = 1 2 ( e i x − e − i x ) = i sin x cosh ( x + i y ) = cosh ( x ) cos ( y ) + i sinh ( x ) sin ( y ) sinh ( x + i y ) = sinh ( x ) cos ( y ) + i cosh ( x ) sin ( y ) tanh ( i x ) = i tan x cosh x = cos ( i x ) sinh x = − i sin ( i x ) tanh x = − i tan ( i x ) {\displaystyle {\begin{aligned}\cosh(ix)&={\frac {1}{2}}\left(e^{ix}+e^{-ix}\right)=\cos x\\\sinh(ix)&={\frac {1}{2}}\left(e^{ix}-e^{-ix}\right)=i\sin x\\\cosh(x+iy)&=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\\\sinh(x+iy)&=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\\\tanh(ix)&=i\tan x\\\cosh x&=\cos(ix)\\\sinh x&=-i\sin(ix)\\\tanh x&=-i\tan(ix)\end{aligned}}}
Thus, hyperbolic functions are periodic with respect to the imaginary component, with period 2 π i {\displaystyle 2\pi i} ( π i {\displaystyle \pi i} for hyperbolic tangent and cotangent).
^ a b c d Weisstein, Eric W. "Hyperbolic Functions" . mathworld.wolfram.com . Retrieved 2020-08-29 . ^ (1999) Collins Concise Dictionary , 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4 , p. 1386 ^ a b Collins Concise Dictionary , p. 328 ^ a b "Hyperbolic Functions" . www.mathsisfun.com . Retrieved 2020-08-29 . ^ Collins Concise Dictionary , p. 1520 ^ Collins Concise Dictionary , p. 329 ^ tanh ^ Collins Concise Dictionary , p. 1340 ^ Woodhouse, N. M. J. (2003), Special Relativity , London: Springer, p. 71, ISBN 978-1-85233-426-0 ^ Abramowitz, Milton ; Stegun, Irene A. , eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , New York: Dover Publications , ISBN 978-0-486-61272-0 ^ Some examples of using arcsinh found in Google Books . ^ Niven, Ivan (1985). Irrational Numbers . Vol. 11. Mathematical Association of America. ISBN 9780883850381 . JSTOR 10.4169/j.ctt5hh8zn . ^ a b George F. Becker; C. E. Van Orstrand (1909). Hyperbolic Functions . Universal Digital Library. The Smithsonian Institution. ^ a b c d e f McMahon, James (1896). Hyperbolic Functions . Osmania University, Digital Library Of India. John Wiley And Sons. ^ a b c d Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100. ^ Becker, Georg F. Hyperbolic functions. Read Books, 1931. Page xlviii. ^ N.P., Bali (2005). Golden Integral Calculus . Firewall Media. p. 472. ISBN 81-7008-169-6 . ^ Steeb, Willi-Hans (2005). Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (3rd ed.). World Scientific Publishing Company. p. 281. ISBN 978-981-310-648-2 . Extract of page 281 (using lambda=1) ^ Oldham, Keith B.; Myland, Jan; Spanier, Jerome (2010). An Atlas of Functions: with Equator, the Atlas Function Calculator (2nd, illustrated ed.). Springer Science & Business Media. p. 290. ISBN 978-0-387-48807-3 . Extract of page 290 ^ Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae" . The Mathematical Gazette . 2 (34): 189. doi :10.2307/3602492 . JSTOR 3602492 . S2CID 125866575 . ^ Martin, George E. (1986). The foundations of geometry and the non-Euclidean plane (1st corr. ed.). New York: Springer-Verlag. p. 416. ISBN 3-540-90694-0 . ^ "Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x)" . StackExchange (mathematics). Retrieved 24 January 2016 . ^ Audibert, Jean-Yves (2009). "Fast learning rates in statistical inference through aggregation". The Annals of Statistics. p. 1627. [1] ^ Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Hyperbolic functions" , NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 . ^ Haskell, Mellen W. , "On the introduction of the notion of hyperbolic functions", Bulletin of the American Mathematical Society 1 :6:155–9, full text
Trigonometric and hyperbolic functions
Groups Other