Comparison of programming languages (algebraic data type)
From Wikipedia the free encyclopedia
This article compares the syntax for defining and instantiating an algebraic data type (ADT), sometimes also referred to as a tagged union, in various programming languages.
Examples of algebraic data types
[edit]ATS
[edit]In ATS, an ADT may be defined with:[1][2]
datatype tree = | Empty of () | Node of (int, tree, tree)
And instantiated as:
val my_tree = Node(42, Node(0, Empty, Empty), Empty)
Additionally in ATS dataviewtypes are the linear type version of ADTs for the purpose of providing in the setting of manual memory management with the convenience of pattern matching.[3] An example program might look like:
(* Alternatively one can use the datavtype keyword *) dataviewtype int_or_string_vt (bool) = | String_vt (true) of string | Int_vt (false) of int (* Alternatively one can use the vtypedef keyword *) viewtypedef Int_or_String_vt = [b: bool] int_or_string_vt b fn print_int_or_string (i_or_s: Int_or_String_vt): void = case+ i_or_s of (* ~ indicates i_or_s will be implicitly freed in this case *) | ~String_vt(s) => println!(s) (* @ indicates i_or_s must be explicitly freed in this case *) | @Int_vt(i) => begin $extfcall(void, "fprintf", stdout_ref, "%d\n", i); free@i_or_s; end implement main0 (): void = let val string_hello_world = String_vt "Hello, world!" val int_0 = Int_vt 0 in print_int_or_string string_hello_world; print_int_or_string int_0; (* which prints: Hello, world! 0 *) end
Ceylon
[edit]In Ceylon, an ADT may be defined with:[4]
abstract class Tree() of empty | Node {} object empty extends Tree() {} final class Node(shared Integer val, shared Tree left, shared Tree right) extends Tree() {}
And instantiated as:
value myTree = Node(42, Node(0, empty, empty), empty);
Clean
[edit]In Clean, an ADT may be defined with:[5]
:: Tree = Empty | Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
Coq
[edit]In Coq, an ADT may be defined with:[6]
Inductive tree : Type := | empty : tree | node : nat -> tree -> tree -> tree.
And instantiated as:
Definition my_tree := node 42 (node 0 empty empty) empty.
C++
[edit]In C++, an ADT may be defined with:[7]
struct Empty final {}; struct Node final { int value; std::unique_ptr<std::variant<Empty, Node>> left; std::unique_ptr<std::variant<Empty, Node>> right; }; using Tree = std::variant<Empty, Node>;
And instantiated as:
Tree myTree { Node{ 42, std::make_unique<Tree>(Node{ 0, std::make_unique<Tree>(), std::make_unique<Tree>() }), std::make_unique<Tree>() } };
Dart
[edit]In Dart, an ADT may be defined with:[8]
sealed class Tree {} final class Empty extends Tree {} final class Node extends Tree { final int value; final Tree left, right; Node(this.value, this.left, this.right); }
And instantiated as:
final myTree = Node(42, Node(0, Empty(), Empty()), Empty());
Elm
[edit]In Elm, an ADT may be defined with:[9]
type Tree = Empty | Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
F#
[edit]In F#, an ADT may be defined with:[10]
type Tree = | Empty | Node of int * Tree * Tree
And instantiated as:
let myTree = Node(42, Node(0, Empty, Empty), Empty)
F*
[edit]In F*, an ADT may be defined with:[11]
type tree = | Empty : tree | Node : value:nat -> left:tree -> right:tree -> tree
And instantiated as:
let my_tree = Node 42 (Node 0 Empty Empty) Empty
Free Pascal
[edit]In Free Pascal (in standard ISO Pascal mode[12]), an ADT may be defined with variant records:[13]
{$mode ISO} program MakeTree; type TreeKind = (Empty, Node); PTree = ^Tree; Tree = record case Kind: TreeKind of Empty: (); Node: ( Value: Integer; Left, Right: PTree; ); end;
And instantiated as:
var MyTree: PTree; begin new(MyTree, Node); with MyTree^ do begin Value := 42; new(Left, Node); with Left^ do begin Value := 0; new(Left, Empty); new(Right, Empty); end; new(Right, Empty); end; end.
Haskell
[edit]In Haskell, an ADT may be defined with:[14]
data Tree = Empty | Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
Haxe
[edit]In Haxe, an ADT may be defined with:[15]
enum Tree { Empty; Node(value:Int, left:Tree, right:Tree); }
And instantiated as:
var myTree = Node(42, Node(0, Empty, Empty), Empty);
Hope
[edit]In Hope, an ADT may be defined with:[16]
data tree == empty ++ node (num # tree # tree);
And instantiated as:
dec mytree : tree; --- mytree <= node (42, node (0, empty, empty), empty);
Idris
[edit]In Idris, an ADT may be defined with:[17]
data Tree = Empty | Node Nat Tree Tree
And instantiated as:
myTree : Tree myTree = Node 42 (Node 0 Empty Empty) Empty
Java
[edit]In Java, an ADT may be defined with:[18]
sealed interface Tree { record Empty() implements Tree {} record Node(int value, Tree left, Tree right) implements Tree {} }
And instantiated as:
var myTree = new Tree.Node( 42, new Tree.Node(0, new Tree.Empty(), new Tree.Empty()), new Tree.Empty() );
Julia
[edit]In Julia, an ADT may be defined with:[19]
struct Empty end struct Node value::Int left::Union{Empty, Node} right::Union{Empty, Node} end const Tree = Union{Empty, Node}
And instantiated as:
mytree = Node(42, Node(0, Empty(), Empty()), Empty())
Kotlin
[edit]In Kotlin, an ADT may be defined with:[20]
sealed class Tree { object Empty : Tree() data class Node(val value: Int, val left: Tree, val right: Tree) : Tree() }
And instantiated as:
val myTree = Tree.Node( 42, Tree.Node(0, Tree.Empty, Tree.Empty), Tree.Empty, )
Limbo
[edit]In Limbo, an ADT may be defined with:[21]
Tree: adt { pick { Empty => Node => value: int; left: ref Tree; right: ref Tree; } };
And instantiated as:
myTree := ref Tree.Node( 42, ref Tree.Node(0, ref Tree.Empty(), ref Tree.Empty()), ref Tree.Empty() );
Mercury
[edit]In Mercury, an ADT may be defined with:[22]
:- type tree ---> empty ; node(int, tree, tree).
And instantiated as:
:- func my_tree = tree. my_tree = node(42, node(0, empty, empty), empty).
Miranda
[edit]In Miranda, an ADT may be defined with:[23]
tree ::= Empty | Node num tree tree
And instantiated as:
my_tree = Node 42 (Node 0 Empty Empty) Empty
Nemerle
[edit]In Nemerle, an ADT may be defined with:[24]
variant Tree { | Empty | Node { value: int; left: Tree; right: Tree; } }
And instantiated as:
def myTree = Tree.Node( 42, Tree.Node(0, Tree.Empty(), Tree.Empty()), Tree.Empty(), );
Nim
[edit]In Nim, an ADT may be defined with:[25]
type TreeKind = enum tkEmpty tkNode Tree = ref TreeObj TreeObj = object case kind: TreeKind of tkEmpty: discard of tkNode: value: int left, right: Tree
And instantiated as:
let myTree = Tree(kind: tkNode, value: 42, left: Tree(kind: tkNode, value: 0, left: Tree(kind: tkEmpty), right: Tree(kind: tkEmpty)), right: Tree(kind: tkEmpty))
OCaml
[edit]In OCaml, an ADT may be defined with:[26]
type tree = | Empty | Node of int * tree * tree
And instantiated as:
let my_tree = Node (42, Node (0, Empty, Empty), Empty)
Opa
[edit]In Opa, an ADT may be defined with:[27]
type tree = { empty } or { node, int value, tree left, tree right }
And instantiated as:
my_tree = { node, value: 42, left: { node, value: 0, left: { empty }, right: { empty } }, right: { empty } }
OpenCog
[edit]![]() | This section needs expansion. You can help by adding to it. (December 2021) |
In OpenCog, an ADT may be defined with:[28]
PureScript
[edit]In PureScript, an ADT may be defined with:[29]
data Tree = Empty | Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
Python
[edit]In Python, an ADT may be defined with:[30][31]
from __future__ import annotations from dataclasses import dataclass @dataclass class Empty: pass @dataclass class Node: value: int left: Tree right: Tree Tree = Empty | Node
And instantiated as:
my_tree = Node(42, Node(0, Empty(), Empty()), Empty())
Racket
[edit]In Typed Racket, an ADT may be defined with:[32]
(struct Empty ()) (struct Node ([value : Integer] [left : Tree] [right : Tree])) (define-type Tree (U Empty Node))
And instantiated as:
(define my-tree (Node 42 (Node 0 (Empty) (Empty)) (Empty)))
Reason
[edit]Reason
[edit]In Reason, an ADT may be defined with:[33]
type Tree = | Empty | Node(int, Tree, Tree);
And instantiated as:
let myTree = Node(42, Node(0, Empty, Empty), Empty);
ReScript
[edit]In ReScript, an ADT may be defined with:[34]
type rec Tree = | Empty | Node(int, Tree, Tree)
And instantiated as:
let myTree = Node(42, Node(0, Empty, Empty), Empty)
Rust
[edit]In Rust, an ADT may be defined with:[35]
enum Tree { Empty, Node(i32, Box<Tree>, Box<Tree>), }
And instantiated as:
let my_tree = Tree::Node( 42, Box::new(Tree::Node(0, Box::new(Tree::Empty), Box::new(Tree::Empty)), Box::new(Tree::Empty), );
Scala
[edit]Scala 2
[edit]In Scala 2, an ADT may be defined with:[citation needed]
sealed abstract class Tree extends Product with Serializable object Tree { final case object Empty extends Tree final case class Node(value: Int, left: Tree, right: Tree) extends Tree }
And instantiated as:
val myTree = Tree.Node( 42, Tree.Node(0, Tree.Empty, Tree.Empty), Tree.Empty )
Scala 3
[edit]In Scala 3, an ADT may be defined with:[36]
enum Tree: case Empty case Node(value: Int, left: Tree, right: Tree)
And instantiated as:
val myTree = Tree.Node( 42, Tree.Node(0, Tree.Empty, Tree.Empty), Tree.Empty )
Standard ML
[edit]In Standard ML, an ADT may be defined with:[37]
datatype tree = EMPTY | NODE of int * tree * tree
And instantiated as:
val myTree = NODE (42, NODE (0, EMPTY, EMPTY), EMPTY)
Swift
[edit]In Swift, an ADT may be defined with:[38]
enum Tree { case empty indirect case node(Int, Tree, Tree) }
And instantiated as:
let myTree: Tree = .node(42, .node(0, .empty, .empty), .empty)
TypeScript
[edit]In TypeScript, an ADT may be defined with:[39]
type Tree = | { kind: "empty" } | { kind: "node"; value: number; left: Tree; right: Tree };
And instantiated as:
const myTree: Tree = { kind: "node", value: 42, left: { kind: "node", value: 0, left: { kind: "empty" }, right: { kind: "empty" }, }, right: { kind: "empty" }, };
Visual Prolog
[edit]In Visual Prolog, an ADT may be defined with:[40]
domains tree = empty; node(integer, tree, tree).
And instantiated as:
constants my_tree : tree = node(42, node(0, empty, empty), empty).
Zig
[edit]In Zig, an ADT may be defined with:[41]
const Tree = union(enum) { empty, node: struct { value: i32, left: *const Tree, right: *const Tree, }, };
And instantiated as:
const my_tree: Tree = .{ .node = .{ .value = 42, .left = &.{ .node = .{ .value = 0, .left = &.empty, .right = &.empty, } }, .right = &.empty, } };
References
[edit]- ^ "Recursively Defined Datatypes".
- ^ "Example: Binary Search Tree".
- ^ "Dataviewtypes as Linear Datatypes".
- ^ "Eclipse Ceylon: Union, intersection, and enumerated types". ceylon-lang.org. Archived from the original on 2022-12-26. Retrieved 2021-11-29.
- ^ "Clean 2.2 Ref Man". clean.cs.ru.nl. Retrieved 2021-11-29.
- ^ "Inductive types and recursive functions — Coq 8.14.1 documentation". coq.inria.fr. Retrieved 2021-11-30.
- ^ "std::variant - cppreference.com". en.cppreference.com. Retrieved 2021-12-04.
- ^ "Patterns". dart.dev. Retrieved 2023-09-28.
- ^ "Custom Types · An Introduction to Elm". guide.elm-lang.org. Retrieved 2021-11-29.
- ^ cartermp. "Discriminated Unions - F#". docs.microsoft.com. Retrieved 2021-11-29.
- ^ "Inductive types and pattern matching — Proof-Oriented Programming in F* documentation". www.fstar-lang.org. Retrieved 2021-12-06.
- ^ "Mode iso". wiki.freepascal.org. Retrieved 2024-05-26.
- ^ "Record types". www.freepascal.org. Retrieved 2021-12-05.
- ^ "4 Declarations and Bindings". www.haskell.org. Retrieved 2021-12-07.
- ^ "Enum Instance". Haxe - The Cross-platform Toolkit. Retrieved 2021-11-29.
- ^ "Defining your own data types". 2011-08-10. Archived from the original on 2011-08-10. Retrieved 2021-12-03.
- ^ "Types and Functions — Idris2 0.0 documentation". idris2.readthedocs.io. Retrieved 2021-11-30.
- ^ "JEP 409: Sealed Classes". openjdk.java.net. Retrieved 2021-12-05.
- ^ "Types · The Julia Language". docs.julialang.org. Retrieved 2021-12-03.
- ^ "Sealed classes | Kotlin". Kotlin Help. Retrieved 2021-11-29.
- ^ Stanley-Marbell, Phillip (2003). Inferno Programming with Limbo. Wiley. pp. 67–71. ISBN 978-0470843529.
- ^ "The Mercury Language Reference Manual: Discriminated unions". www.mercurylang.org. Retrieved 2021-12-07.
- ^ "An Overview of Miranda". www.cs.kent.ac.uk. Archived from the original on 2021-12-04. Retrieved 2021-12-04.
- ^ "Basic Variants · rsdn/nemerle Wiki". GitHub. Retrieved 2021-12-03.
- ^ "Nim Manual". nim-lang.org. Retrieved 2021-11-29.
- ^ "OCaml - The OCaml language". ocaml.org. Retrieved 2021-12-07.
- ^ "The type system · MLstate/opalang Wiki". GitHub. Retrieved 2021-12-07.
- ^ "Type constructor - OpenCog". wiki.opencog.org. Retrieved 2021-12-07.
- ^ purescript/documentation, PureScript, 2021-11-24, retrieved 2021-11-30
- ^ PEP 484 – Type Hints, Python
- ^ "PEP 604 – Allow writing union types as X | Y | peps.python.org". Python Enhancement Proposals (PEPs). Retrieved 2024-11-05.
- ^ "2 Beginning Typed Racket". docs.racket-lang.org. Retrieved 2021-12-04.
- ^ "Variants · Reason". reasonml.github.io. Retrieved 2021-11-30.
- ^ "Variant | ReScript Language Manual". ReScript Documentation. Retrieved 2021-11-30.
- ^ "enum - Rust". doc.rust-lang.org. Retrieved 2021-11-29.
- ^ "Algebraic Data Types". Scala Documentation. Retrieved 2021-11-29.
- ^ "Defining datatypes". homepages.inf.ed.ac.uk. Retrieved 2021-12-01.
- ^ "Enumerations — The Swift Programming Language (Swift 5.5)". docs.swift.org. Retrieved 2021-11-29.
- ^ "Documentation - TypeScript for Functional Programmers". www.typescriptlang.org. Retrieved 2021-11-29.
- ^ "Language Reference/Domains - wiki.visual-prolog.com". wiki.visual-prolog.com. Retrieved 2021-12-07.
- ^ "Documentation - The Zig Programming Language". ziglang.org. Retrieved 2024-12-16.