Quickly growing function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total computable function that is not primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive.
After Ackermann's publication of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version is the two-argument Ackermann–Péter function developed by Rózsa Péter and Raphael Robinson. This function is defined from the recurrence relation
with appropriate base cases. Its value grows very rapidly; for example,
results in
, an integer with 19,729 decimal digits.[3]
In the late 1920s, the mathematicians Gabriel Sudan and Wilhelm Ackermann, students of David Hilbert, were studying the foundations of computation. Both Sudan and Ackermann are credited with discovering total computable functions (termed simply "recursive" in some references) that are not primitive recursive. Sudan published the lesser-known Sudan function, then shortly afterwards and independently, in 1928, Ackermann published his function
(from Greek, the letter phi). Ackermann's three-argument function,
, is defined such that for
, it reproduces the basic operations of addition, multiplication, and exponentiation as
and for
it extends these basic operations in a way that can be compared to the hyperoperations:
(Aside from its historic role as a total-computable-but-not-primitive-recursive function, Ackermann's original function is seen to extend the basic arithmetic operations beyond exponentiation, although not as seamlessly as do variants of Ackermann's function that are specifically designed for that purpose—such as Goodstein's hyperoperation sequence.)
In On the Infinite, David Hilbert hypothesized that the Ackermann function was not primitive recursive, but it was Ackermann, Hilbert's personal secretary and former student, who actually proved the hypothesis in his paper On Hilbert's Construction of the Real Numbers.
Rózsa Péter and Raphael Robinson later developed a two-variable version of the Ackermann function that became preferred by almost all authors.
The generalized hyperoperation sequence, e.g.
, is a version of the Ackermann function as well.
In 1963 R.C. Buck based an intuitive two-variable [n 1] variant
on the hyperoperation sequence:
Compared to most other versions, Buck's function has no unessential offsets:
Many other versions of Ackermann function have been investigated.
Definition: as m-ary function
[edit] Ackermann's original three-argument function
is defined recursively as follows for nonnegative integers
and
:
Of the various two-argument versions, the one developed by Péter and Robinson (called "the" Ackermann function by most authors) is defined for nonnegative integers
and
as follows:
The Ackermann function has also been expressed in relation to the hyperoperation sequence:
or, written in Knuth's up-arrow notation (extended to integer indices
):
or, equivalently, in terms of Buck's function F:
Definition: as iterated 1-ary function
[edit] Define
as the n-th iterate of
:
Iteration is the process of composing a function with itself a certain number of times. Function composition is an associative operation, so
.
Conceiving the Ackermann function as a sequence of unary functions, one can set
.
The function then becomes a sequence
of unary[n 2] functions, defined from iteration:
The recursive definition of the Ackermann function can naturally be transposed to a term rewriting system (TRS).
TRS, based on 2-ary function
[edit] The definition of the 2-ary Ackermann function leads to the obvious reduction rules
Example
Compute
The reduction sequence is [n 3]
Leftmost-outermost (one-step) strategy: | Leftmost-innermost (one-step) strategy: |
| |
| |
| |
| |
| |
| |
| |
To compute
one can use a stack, which initially contains the elements
.
Then repeatedly the two top elements are replaced according to the rules[n 4]
Schematically, starting from
:
WHILE stackLength <> 1 { POP 2 elements; PUSH 1 or 2 or 3 elements, applying the rules r1, r2, r3 }
The pseudocode is published in Grossman & Zeitman (1988).
For example, on input
,
the stack configurations | reflect the reduction[n 5] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Remarks
- The leftmost-innermost strategy is implemented in 225 computer languages on Rosetta Code.
- For all
the computation of
takes no more than
steps. - Grossman & Zeitman (1988) pointed out that in the computation of
the maximum length of the stack is
, as long as
. Their own algorithm, inherently iterative, computes
within
time and within
space.
TRS, based on iterated 1-ary function
[edit] The definition of the iterated 1-ary Ackermann functions leads to different reduction rules
As function composition is associative, instead of rule r6 one can define
Like in the previous section the computation of
can be implemented with a stack.
Initially the stack contains the three elements
.
Then repeatedly the three top elements are replaced according to the rules[n 4]
Schematically, starting from
:
WHILE stackLength <> 1 { POP 3 elements; PUSH 1 or 3 or 5 elements, applying the rules r4, r5, r6; }
Example
On input
the successive stack configurations are
The corresponding equalities are
When reduction rule r7 is used instead of rule r6, the replacements in the stack will follow
The successive stack configurations will then be
The corresponding equalities are
Remarks
- On any given input the TRSs presented so far converge in the same number of steps. They also use the same reduction rules (in this comparison the rules r1, r2, r3 are considered "the same as" the rules r4, r5, r6/r7 respectively). For example, the reduction of
converges in 14 steps: 6 × r1, 3 × r2, 5 × r3. The reduction of
converges in the same 14 steps: 6 × r4, 3 × r5, 5 × r6/r7. The TRSs differ in the order in which the reduction rules are applied. - When
is computed following the rules {r4, r5, r6}, the maximum length of the stack stays below
. When reduction rule r7 is used instead of rule r6, the maximum length of the stack is only
. The length of the stack reflects the recursion depth. As the reduction according to the rules {r4, r5, r7} involves a smaller maximum depth of recursion,[n 6] this computation is more efficient in that respect.
TRS, based on hyperoperators
[edit] As Sundblad (1971) — or Porto & Matos (1980) — showed explicitly, the Ackermann function can be expressed in terms of the hyperoperation sequence:
or, after removal of the constant 2 from the parameter list, in terms of Buck's function
Buck's function
, a variant of Ackermann function by itself, can be computed with the following reduction rules:
Instead of rule b6 one can define the rule
To compute the Ackermann function it suffices to add three reduction rules
These rules take care of the base case A(0,n), the alignment (n+3) and the fudge (-3).
Example
Compute
using reduction rule :[n 5] | using reduction rule :[n 5] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
The matching equalities are
- when the TRS with the reduction rule
is applied:
- when the TRS with the reduction rule
is applied:
Remarks
- The computation of
according to the rules {b1 - b5, b6, r8 - r10} is deeply recursive. The maximum depth of nested
s is
. The culprit is the order in which iteration is executed:
. The first
disappears only after the whole sequence is unfolded. - The computation according to the rules {b1 - b5, b7, r8 - r10} is more efficient in that respect. The iteration
simulates the repeated loop over a block of code.[n 7] The nesting is limited to
, one recursion level per iterated function. Meyer & Ritchie (1967) showed this correspondence. - These considerations concern the recursion depth only. Either way of iterating leads to the same number of reduction steps, involving the same rules (when the rules b6 and b7 are considered "the same"). The reduction of
for instance converges in 35 steps: 12 × b1, 4 × b2, 1 × b3, 4 × b5, 12 × b6/b7, 1 × r9, 1 × r10. The modus iterandi only affects the order in which the reduction rules are applied. - A real gain of execution time can only be achieved by not recalculating subresults over and over again. Memoization is an optimization technique where the results of function calls are cached and returned when the same inputs occur again. See for instance Ward (1993). Grossman & Zeitman (1988) published a cunning algorithm which computes
within
time and within
space.
To demonstrate how the computation of
results in many steps and in a large number:[n 5]
Computing the Ackermann function can be restated in terms of an infinite table. First, place the natural numbers along the top row. To determine a number in the table, take the number immediately to the left. Then use that number to look up the required number in the column given by that number and one row up. If there is no number to its left, simply look at the column headed "1" in the previous row. Here is a small upper-left portion of the table:
The numbers here which are only expressed with recursive exponentiation or Knuth arrows are very large and would take up too much space to notate in plain decimal digits.
Despite the large values occurring in this early section of the table, some even larger numbers have been defined, such as Graham's number, which cannot be written with any small number of Knuth arrows. This number is constructed with a technique similar to applying the Ackermann function to itself recursively.
This is a repeat of the above table, but with the values replaced by the relevant expression from the function definition to show the pattern clearly:
Values of A(m, n) n m | 0 | 1 | 2 | 3 | 4 | n |
0 | 0+1 | 1+1 | 2+1 | 3+1 | 4+1 | n + 1 |
1 | A(0, 1) | A(0, A(1, 0)) = A(0, 2) | A(0, A(1, 1)) = A(0, 3) | A(0, A(1, 2)) = A(0, 4) | A(0, A(1, 3)) = A(0, 5) | A(0, A(1, n−1)) |
2 | A(1, 1) | A(1, A(2, 0)) = A(1, 3) | A(1, A(2, 1)) = A(1, 5) | A(1, A(2, 2)) = A(1, 7) | A(1, A(2, 3)) = A(1, 9) | A(1, A(2, n−1)) |
3 | A(2, 1) | A(2, A(3, 0)) = A(2, 5) | A(2, A(3, 1)) = A(2, 13) | A(2, A(3, 2)) = A(2, 29) | A(2, A(3, 3)) = A(2, 61) | A(2, A(3, n−1)) |
4 | A(3, 1) | A(3, A(4, 0)) = A(3, 13) | A(3, A(4, 1)) = A(3, 65533) | A(3, A(4, 2)) | A(3, A(4, 3)) | A(3, A(4, n−1)) |
5 | A(4, 1) | A(4, A(5, 0)) | A(4, A(5, 1)) | A(4, A(5, 2)) | A(4, A(5, 3)) | A(4, A(5, n−1)) |
6 | A(5, 1) | A(5, A(6, 0)) | A(5, A(6, 1)) | A(5, A(6, 2)) | A(5, A(6, 3)) | A(5, A(6, n−1)) |
- It may not be immediately obvious that the evaluation of
always terminates. However, the recursion is bounded because in each recursive application either
decreases, or
remains the same and
decreases. Each time that
reaches zero,
decreases, so
eventually reaches zero as well. (Expressed more technically, in each case the pair
decreases in the lexicographic order on pairs, which is a well-ordering, just like the ordering of single non-negative integers; this means one cannot go down in the ordering infinitely many times in succession.) However, when
decreases there is no upper bound on how much
can increase — and it will often increase greatly. - For small values of m like 1, 2, or 3, the Ackermann function grows relatively slowly with respect to n (at most exponentially). For
, however, it grows much more quickly; even
is about 2.00353×1019728, and the decimal expansion of
is very large by any typical measure, about 2.12004×106.03123×1019727. - An interesting aspect is that the only arithmetic operation it ever uses is addition of 1. Its fast growing power is based solely on nested recursion. This also implies that its running time is at least proportional to its output, and so is also extremely huge. In actuality, for most cases the running time is far larger than the output; see above.
- A single-argument version
that increases both
and
at the same time dwarfs every primitive recursive function, including very fast-growing functions such as the exponential function, the factorial function, multi- and superfactorial functions, and even functions defined using Knuth's up-arrow notation (except when the indexed up-arrow is used). It can be seen that
is roughly comparable to
in the fast-growing hierarchy. This extreme growth can be exploited to show that
which is obviously computable on a machine with infinite memory such as a Turing machine and so is a computable function, grows faster than any primitive recursive function and is therefore not primitive recursive.
Not primitive recursive
[edit] The Ackermann function grows faster than any primitive recursive function and therefore is not itself primitive recursive. Proof sketch: primitive recursive function defined using up to k recursions must grow slower than
, the (k+1)-th function in the fast-growing hierarchy, but the Ackermann function grows at least as fast as
.
Specifically, one shows that, for every primitive recursive function
, there exists a non-negative integer
, such that for all non-negative integers
,
Once this is established, it follows that
itself is not primitive recursive, since otherwise putting
would lead to the contradiction