2020 in science

From Wikipedia the free encyclopedia

Years in science: 2017 2018 2019 2020 2021 2022 2023
Centuries: 20th century · 21st century · 22nd century
Decades: 1990s 2000s 2010s 2020s 2030s 2040s 2050s
Years: 2017 2018 2019 2020 2021 2022 2023
List of years in science (table)
+...

A number of significant scientific events occurred in 2020.

Events[edit]

January[edit]

February[edit]

March[edit]

April[edit]

May[edit]

June[edit]

July[edit]

July 2020 in science
July: The UAE,[1] China,[2] and the United States[3] launch probes to Mars.
  • 1 July
    • Scientist at CERN report that the LHCb experiment has observed a four-charm tetraquark particle never seen before, which is likely to be the first of a previously undiscovered class of particles.[4][5][6]
    • Scientists report that they measured that quantum vacuum fluctuations can influence the motion of macroscopic, human-scale objects for the first time by measuring correlations below the standard quantum limit between the position/momentum uncertainty of the mirrors of LIGO and the photon number/phase uncertainty of light that they reflect.[7][8][9]
  • 2 July – Scientists report that a more infectious SARS-CoV-2 variant with spike protein variant G614 has replaced D614 as the dominant form in the pandemic.[10][11]
3 July: Via analysis of satellite images, scientists show that certified "sustainable" palm oil production resulted in deforestation of tropical forests of Sumatra and Borneo and endangered mammals' habitat degradation in the last 30 years.[12]
8 July: Researchers report that they succeeded in using a genetically-altered variant of R. sulfidophilum to produce spidroins, the main proteins in spider silk.[28]
10 July: Scientists report that the Moon formed slightly later than thought (4.425 ±0.025 bya) and that it hosted an ocean of magma for much longer than previously thought (~200 My).[42] Image: the thermal state of the Moon at age 100 My (from the study)
13 July: Researchers report the development of a reusable aluminium surface for efficient solar-based water sanitation.[51]
15 July: In two studies of the Global Carbon Project researchers summarise and analyse new estimates of the global methane budget and provide data and insights on sources and sinks for the geographical regions and economic sectors where the rising anthropogenic methane emissions have changed the most over recent decades.[55]
  • 15 July
    • Researchers report the discovery of chemolithoautotrophic bacterial culture that feeds on the metal manganese after performing unrelated experiments and named its bacterial species Candidatus Manganitrophus noduliformans and Ramlibacter lithotrophicus.[56][57][58]
    • In two studies researchers of the Global Carbon Project summarise and analyse new estimates of the global methane budget and provide data and insights on sources and sinks for the geographical regions and economic sectors where the rising anthropogenic methane emissions have changed the most over recent decades. According to the studies, global methane emissions for the 2008 to 2017 decade increased by almost 10 percent compared to the previous decade.[59][55][60][61]
16 July: Scientists, using public biological data on 1.75 m people with known lifespans overall, identify 10 genomic loci which appear to intrinsically influence healthspan, lifespan, and longevity and identify haem metabolism as a promising candidate for further research within the field.[62]
22 July: Astronomers publish the first photo of multiple exoplanets orbiting a sunlike starTYC 8998-760-1.[68]
22 July: Scientists confirm the first detected active leak of sea-bed methane in Antarctica.[69]
28 July: Marine biologists report that aerobic microorganisms (mainly), in "quasi-suspended animation", were found in organically-poor sediments, up to 101.5 million years old, 68.9 metres (226 feet) below the seafloor in the South Pacific Gyre (SPG) ("the deadest spot in the ocean"), and could be the longest-living life forms ever found.[89]
29 July: Scientists report that work honored by Nobel prizes clusters in only a few scientific fields.[92]
  • 29 July
    • Scientists of the NA62 experiment at CERN claim to have presented first evidence of a highly rare process – a decay of a charged kaon – predicted in the Standard Model which may help identifying possible deviations from the model.[93]
    • Scientists report that they have transformed the abundant diamagnetic material known as "fool's gold" and pyrite into a ferromagnetic one by inducing voltage, which may lead to techniques with potential applications for devices such as magnetic data storage ones.[94][95]
    • Scientists report that work honored by Nobel prizes clusters in only a few scientific fields with only 36/71 having received at least one Nobel prize of the 114/849 domains science could be divided into according to their DC2 and DC3 classification systems. Five of the 114 domains were shown to make up over half of the Nobel prizes awarded 1995–2017 (particle physics [14%], cell biology [12.1%], atomic physics [10.9%], neuroscience [10.1%], molecular chemistry [5.3%]).[92][96]
    • Scientists report that geochemical data shows that the origin of 50 of the 52 sarsen megaliths used to construct Stonehenge is most likely West Woods, Wiltshire, 25 km north of Stonehenge.[97][98]
  • 30 July – NASA successfully launches its Mars 2020 rover mission to search for signs of ancient life and collect samples for return to Earth. The mission includes technology demonstrations to prepare for future human missions.[3]
  • 31 July

August[edit]

August 2020 in science
1 August: Brazil's NISR reports that satellite data shows that the number of fires in the Amazon increased by 28% to ~6,800 fires in July compared to the ~5,300 wildfires in July 2019.[102] (Image acquired by MODIS on NASA's Aqua satellite on August 1, 2020.)[103]
10 August: The dwarf planet Ceres is confirmed to be a water-rich body.[134]
13 August: Melting of the Greenland ice sheet is shown to have passed the point of no return, based on 40 years of satellite data. The switch to a dynamic state of sustained mass loss resulted from widespread retreat in 2000–2005.[147]
  • 13 August
    • Scientists at the University of Southern California report the "likely" order of initial symptoms of the COVID-19 disease: "fever, cough, muscle pain, and then nausea, and/or vomiting, and diarrhea".[148][149]
    • Unexpected dimming of Betelgeuse is explained by NASA as a "traumatic outburst", caused by an immense amount of hot material ejected into space, forming a dust cloud that blocked starlight.[150][151][152] On 30 August 2020, astronomers reported the detection of a second dust cloud emitted from Betelgeuse, and associated with a secondary minimum on 3 August in luminosity of the star.[153]
    • Universal coherence protection is reported to have been achieved in a solid-state spin qubit, a modification that allows quantum systems to stay operational (or "coherent") for 10,000 times longer than before.[154][155]
    • July 2020 is tied as the second-warmest July on record, with a record low Arctic sea ice extent for the month, in a report by the National Oceanic and Atmospheric Administration.[156]
    • Melting of the Greenland ice sheet is shown to have passed the point of no return, based on 40 years of satellite data, by scientists at Ohio State University. The switch to a dynamic state of sustained mass loss resulted from widespread retreat in 2000–2005.[147][157][158]
  • 14 August – Scientists report the discovery of the oldest grass bedding from at least 200,000 years ago, much older than the oldest previously known bedding. They speculate that insect-repellent plants and ash layers, sometimes due to burned older grass beddings, found beneath the bedding have been used for a dirt-free, insulated base and to keep away arthropods.[159][160][161]
  • 16 August – Astronomers report the detection of asteroid 2020 QG, a small Earth-crossing near-Earth asteroid of the Apollo group that passed the Earth about 2,950 kilometres (1,830 mi) away, the closest known asteroid to pass the Earth that did not impact the planet.[162][163]
  • 17 August
  • 18 August
  • 19 August
    • An analysis indicates that sustainable seafood could increase by 36–74% by 2050 compared to current yields and that whether or not these production potentials are realized sustainably depends on factors such as policy reforms, technological innovation and the extent of future shifts in demand.[177][178]
    • Researchers report that widespread declines in Pacific salmon size resulted in substantial losses to ecosystems and people, which they estimate, and are associated with factors that include climate change and competition with growing numbers of wild and hatchery salmon.[179][180]
    • Researchers provide explanations for variations in the rate of global mean sea-level rise since 1900 and report that dam building in the 20th century offset factors that would have led to a higher rate during the 1970s, implying that no additional processes are required to explain the observed major variations.[181][182][183]
20 August: Scientists report that the Greenland ice sheet lost a record amount of ice during 2019.[184]

September[edit]

September 2020 in science
14 September: Scientists announce the detection of phosphine in Venus' atmosphere, which is known to be a strong predictor for the presence of microbial life.[227] (This image is the first received photo sent from the surface of another planet, Venus).[228]
18 September: Astronomers report evidence of an exoplanet located in the Whirlpool Galaxy.[301]

October[edit]

Science Summary for this section (October)
7 October: A quantification of global N2O sources and sinks.[373]
13 October: Betelgeuse is shown to be 25% smaller and closer than previously thought.[374]
  • 7 October
    • The 2020 Nobel Prize in Chemistry is awarded to Emmanuelle Charpentier and Jennifer A. Doudna for their work on genome editing.[375]
    • Researchers reveal a new high-temperature superconducting cable, named VIPER, capable of sustaining higher levels of electric current and magnetic fields than previously possible.[376][377][378]
    • Researchers demonstrate the first passive radiative device that absorbs heat from the hotter inside of an enclosure and emits it on the outside. The system has potential to cool vehicle and building interiors, and solar cells, without using electricity.[379][380]
    • Medical researchers conclude the SARS-CoV-2 can remain on common surfaces for up to 28 days in laboratory conditions that include darkness.[381][382]
    • Scientists present a comprehensive quantification of global sources and sinks of the greenhouse gas N2O and report that human-induced emissions increased by 30% over the past four decades and is the main cause of the increase in atmospheric concentrations, with recent growth exceeding some of the highest projected IPCC emission scenarios.[373][383]
  • 8 October
  • 12 October – Medical scientists report, for the first time in the U.S. and fifth worldwide, confirming evidence of reinfection with the SARS-CoV-2.[389][390]
  • 13 October
    • The red supergiant star Betelgeuse is shown to be 530 light years away, about 25% closer than previously thought. Additionally, its estimated size is revised downwards, from the semi-major axis of Jupiter to around two-thirds of this diameter.[391][374]
    • Scientists report in a preprint the possible detection of glycine in the atmosphere of Venus with the ALMA radio telescope. The amino acid may be relevant to the origin of life and was found on meteorites earlier.[392][393]
    • On 15 October BepiColombo conducts a fly-by of Venus, having instruments possibly sensitive enough to detect the gas, without a detection or non-detection being declared by 10 November.[394]
    • A data analysis released as a preprint on 19 October shows no statistical evidence for an apparent detection of phosphine in the atmosphere of Venus reported in September and that "at least a handful of spurious features" which can be obtained with the data processing method that was used in the study.[395][396]
    • On 27 October scientists release a preprint according to which the detection via JCMT can be explained by the presence of other gases and the ALMA interferometric data is invalid due to calibration issues of the used data processing scripts. Independent processing of the ALMA data by several teams varied from the original study's authors'.[how?] They also claim to have found an inconsistency between the proposed photochemical model and data about the altitude of the gas in the original study.[397][398]
    • On the same day, other researchers publish a paper according to which no phosphine was discovered between 2012 and 2015 at the cloud tops and the lower mesosphere above, putting an upper limit of PH3 abundance there.[395][399]
    • On 28 October science journalists reported that ESO ALMA scientists found separate, unspecified issues – later reported to be a calibration error that was found as a result of the study "No phosphine in the atmosphere of Venus"[400] – with the data that was used by authors of the study that claimed an apparent detection of phosphine in September, and took those data off the observatory's public archive so that the European ALMA Regional Centre Network, who originally calibrated the data, scrutinises it in detail and reprocesses it.[401][395][additional citation(s) needed]
14 October: Room-temperature superconductivity is demonstrated at 15°C, an improvement of 35°C on the previous record. Report is not reliable (retracted article[402]).The image shows a magnet levitating over a superconductor
14 October: A study shows the impact of the C19-pandemic in global CO2 emissions.[403]
15 October: The discovery of cyclopropenylidene in the atmosphere of Saturn's moon Titan is announced.[417]
20 October: NASA's spacecraft OSIRIS-REx collects a sample from asteroid Bennu, becoming the world's third spacecraft to do so.[431]
26 October: Astronomers report detecting molecular water on the sunlit surface of the Moon outside of the lunar south pole.[438]
28 October: the study "Water, energy and land insecurity in global supply chains" explained by a video
  • 28 October
    • Scientists report finding a coral reef measuring 500 m in height, located at the northern tip of Australia's Great Barrier Reef, the first discovery of its kind in 120 years.[411][448]
    • Scientists publish estimates of the occurrence rates of rocky habitable zone planets around Sun-like stars with updated data and criteria for habitable zones – including ≈4 such exoplanets around G and K dwarf stars within 10 pc of the Sun and ≈300 million in the Milky Way.[449][450][451]
    • Scientists report in a preprint that a variant of SARS-CoV-2, 20A.EU1, was first observed in Spain in early summer and has become the most frequent variant in multiple European countries. They also illustrate the emergence and spread of other frequent clusters of sequences using Nextstrain.[452][453]
    • A systematic, and possibly first large-scale, cross-sectoral analysis of water, energy and land in security in 189 countries that links national and sector consumption to sources shows that countries and sectors are highly exposed to over-exploited, insecure, and degraded such resources with economic globalization having decreased security of global supply chains. The study finds that most countries exhibit greater exposure to resource risks via international trade – mainly from remote production sources – and that diversifying trading partners is unlikely to help countries and sectors to reduce these or to improve their resource self-sufficiency.[454][455][456][457]
29 October: Scientists recommend a healthy preparation procedure of rice.[458]

November[edit]

Science Summary for this section (November)
4 November: Scientists announce the discovery of Kylinxia which could be at the evolutionary root of arthropods.[468]
11 November: Scientists report the detection of SARS-CoV-2 RBD antibodies as early as 3 September 2019, which could establish a substantially earlier start time of the C19 pandemic.[492]
  • 11 November
    • Astronomers report newly found evidence for volcanic activity as recently as 53–210 kya on the planet Mars. Such activity could have provided the environment, in terms of energy and chemicals, needed to support life forms.[493][494]
    • Scientists report the detection of SARS-CoV-2 receptor-binding domain antibodies in 111 (11.6%) of 959 asymptomatic individuals of a lung cancer screening trial in Italy, starting from 3 September 2019, apparently establishing a substantially earlier start time of the COVID-19 pandemic.[492][495] However, the journal published an expression of concern in March 2021 due to possible issues with the peer review.[496]
  • 12 November – Scientists report the development of a microalgae-based fish-free aquaculture feed with substantial gains in sustainability, performance, economic viability, and human health.[497][498]
  • 13 November – Scientists report that Mars' current loss of atomic hydrogen from water is largely driven by seasonal processes and dust storms that transport water directly to the upper atmosphere and that this has influenced the planet's climate.[499][500]
  • 16 November
    • Results of phase III trials of Moderna's mRNA vaccine are announced, the company claims to 94.5% reduction of COVID-19 cases based on interim results, including severe illnesses. The vaccine is easier to distribute than BNT162b2 as no ultra-cold storage is required.[501]
    • ALMA staff release a corrected version of the data used by other scientists in a study published on 14 September that claimed an apparent detection of phosphine in Venus' atmosphere. On the same day authors of this study publish a re-analysis as a preprint using the new data that concludes the planet-averaged PH3 abundance to be ≈7 times lower than what they detected with data of the previous ALMA processing, to vary by location and to be reconcilable with the JCMT detection of ≈20 times this abundance if substantially varying in time. They also respond to points raised in a preprint that challenged their conclusions in October and find that so far no other compound can explain the data.[502][503][504][505] ALMA is reported to be expected to restart in early 2021 after a shutdown due to the COVID-19 crisis and may enable further observations that could provide insights for the ongoing investigation.[504]
  • 18 November – Researchers report that CRISPR/Cas9, using a lipid nanoparticle delivery system, has been used to treat cancer effectively in a living animal for the first time.[506][507]
  • 21 November – Sentinel-6 Michael Freilich is launched into orbit, to monitor sea levels in higher detail than ever before. The satellite's resolution will allow measuring of water depths closer to the shore, which has long been an area of uncertainty.[508]
  • 23 November
30 November: The 50-year problem of protein structure prediction is reported to be largely solved with an AI algorithm.[515]

December[edit]

Science Summary for this section (December)
1 December: the Arecibo telescope collapses.[531]
  • 1 December
    • The Arecibo telescope collapses after several hurricanes, storms, and earthquakes over the 2010s raised concerns over the stability of the Arecibo observatory and two cable breaks in August and November led teams of engineers to assess a high risk of collapse. One of the three teams determined there to be no safe way to repair the damage due to which the NSF announced the decision for a controlled decommissioning of the telescope on November 19, a few days before the collapse, which was challenged by scientists worldwide who, with a public petition subsequent to this announcement, asked for it to be repaired instead.[532][533] The telescope built in 1963 was Earth's largest single-aperture telescope until 2016 and the source technology for many significant scientific discoveries, SETI as well as of the 1974 Arecibo message.[532][531]
    • The Chinese experimental nuclear fusion reactor HL-2M is turned on for the first time, achieving its first plasma discharge.[534]
2 December: The world's first regulatory approval for a cultivated meat product is granted.[535] (Image shows other cultured meat)
2 December: Scientists confirm 2020 SO to be rocket booster space junk.[536]
8 December: Second successful retrieval of pristine asteroid-samples via Hayabusa2.[547]
11 December: the orbital motion for HD 106906 b may be useful for attempts to predict the semi-major axis of the hypothetical Solar System object called Planet Nine.[563]
16 December: Chinese Chang'e 5 spacecraft return the first lunar sample since 1976.[579]
18 December: News reports about the detection of candidate ETI radio signal, BLC1, apparently from the direction of Proxima Centauri, the closest star to the Sun.[583]
  • 18 December
    • Media outlets report that astronomers detected a radio signal, BLC1 (Breakthrough Listen Candidate 1), apparently coming from the direction of Proxima Centauri, the closest star to the Sun. Astronomers have stated that this and other, yet unpublished, signals, "are likely interference that we cannot fully explain" and that it could be the strongest candidate for an extraterrestrial radio signal since the "Wow! signal" of 1977.[583][584][585]
      • A paper by other astronomers released 10 days before the news report about BLC1 reports the detection of "a bright, long-duration optical flare, accompanied by a series of intense, coherent radio bursts" from Proxima Centauri also in April and May 2019. Their finding has not been put in direct relation to the BLC1 signal by scientists or media outlets so far but implies that planets around Proxima Centauri and other red dwarfs are likely to be rather uninhabitable for humans and other currently known organisms.[586][587][588]
    • Ecologists report that the driest and warmest sites of 32 tracked Brazilian non-Amazon tropical forests have moved from carbon sinks to carbon sources overall c.2013.[589][590]
    • Researchers report a deep learning approach to identify gene regulation at the single-cell level, which previously had been limited to tissue-level analysis.[591][592]
  • 21 December
  • 22 December
  • 23 December – A study finds that face masks reduce the risk of spreading large COVID-19-linked droplets when speaking or coughing by up to 99.9 percent.[605][606]
  • 30 December – Scientists report finding microvascular blood vessel damage in tissue samples of brains without any detected SARS-CoV-2 as well as olfactory bulbs from patients who died from COVID-19.[607][608][609]
  • 31 December – Scientists determine that desalination membranes are inconsistent in density and mass distribution, and show a way to increase efficiency in the membranes by up to 40%.[610][611]

Awards[edit]

Deaths[edit]

See also[edit]

References[edit]

  1. ^ a b "Hope probe: UAE launches historic first mission to Mars". BBC News. 19 July 2020. Retrieved 20 July 2020.
  2. ^ a b "China's Tianwen-1 Mars rover rockets away from Earth". BBC News. 23 July 2020. Retrieved 23 July 2020.
  3. ^ a b "NASA, ULA Launch Mars 2020 Perseverance Rover Mission to Red Planet". NASA. 30 July 2020. Retrieved 30 July 2020.
  4. ^ "LHCb discovers a new type of tetraquark at CERN". CERN. 1 July 2020. Retrieved 5 July 2020.
  5. ^ "First-of-Its-Kind Four Quark Particle Discovered at CERN". Interesting Engineering. 2 July 2020. Retrieved 5 July 2020.
  6. ^ collaboration, LHCb; Aaij, R.; Abellán Beteta, C.; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C. A.; Aiola, S.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Aliouche, Z.; Alkhazov, G.; Alvarez Cartelle, P.; Alves Jr, A. A.; Amato, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreianov, A.; Andreotti, M.; Archilli, F.; Artamonov, A.; Artuso, M.; et al. (30 June 2020). "Observation of structure in the $J/\psi$-pair mass spectrum". Science Bulletin. 65 (23): 1983–1993. arXiv:2006.16957. Bibcode:2020SciBu..65.1983L. doi:10.1016/j.scib.2020.08.032. PMID 36659056. S2CID 220265852.
  7. ^ "Quantum fluctuations can jiggle objects on the human scale". phys.org. Retrieved 15 August 2020.
  8. ^ "LIGO reveals quantum correlations at work in mirrors weighing tens of kilograms". Physics World. 1 July 2020. Retrieved 15 August 2020.
  9. ^ Yu, Haocun; McCuller, L.; Tse, M.; Kijbunchoo, N.; Barsotti, L.; Mavalvala, N. (July 2020). "Quantum correlations between light and the kilogram-mass mirrors of LIGO". Nature. 583 (7814): 43–47. arXiv:2002.01519. Bibcode:2020Natur.583...43Y. doi:10.1038/s41586-020-2420-8. ISSN 1476-4687. PMID 32612226. S2CID 211031944.
  10. ^ "New, more infectious strain of COVID-19 now dominates global cases of virus: study". medicalxpress.com. Retrieved 16 August 2020.
  11. ^ Korber, Bette; Fischer, Will M.; Gnanakaran, Sandrasegaram; Yoon, Hyejin; Theiler, James; Abfalterer, Werner; Hengartner, Nick; Giorgi, Elena E.; Bhattacharya, Tanmoy; Foley, Brian; Hastie, Kathryn M.; Parker, Matthew D.; Partridge, David G.; Evans, Cariad M.; Freeman, Timothy M.; Silva, Thushan I. de; Angyal, Adrienne; Brown, Rebecca L.; Carrilero, Laura; Green, Luke R.; Groves, Danielle C.; Johnson, Katie J.; Keeley, Alexander J.; Lindsey, Benjamin B.; Parsons, Paul J.; Raza, Mohammad; Rowland-Jones, Sarah; Smith, Nikki; Tucker, Rachel M.; Wang, Dennis; Wyles, Matthew D.; McDanal, Charlene; Perez, Lautaro G.; Tang, Haili; Moon-Walker, Alex; Whelan, Sean P.; LaBranche, Celia C.; Saphire, Erica O.; Montefiori, David C. (2 July 2020). "Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus". Cell. 182 (4): 812–827.e19. doi:10.1016/j.cell.2020.06.043. ISSN 0092-8674. PMC 7332439. PMID 32697968.
  12. ^ a b "Certified 'sustainable' palm oil fields endanger mammal habitats and biodiverse tropical forests over 30 years". phys.org. Retrieved 16 August 2020.
  13. ^ Zimmer, Carl (4 July 2020). "DNA Linked to Covid-19 Was Inherited From Neanderthals, Study Finds - The stretch of six genes seems to increase the risk of severe illness from the coronavirus". New York Times. Retrieved 5 July 2020.
  14. ^ Zeberg, Hugo; Paabo, Svante (3 July 2020). "The major genetic risk factor for severe COVID-19 is inherited from Neandertals" (PDF). bioRxiv. doi:10.1101/2020.07.03.186296. hdl:21.11116/0000-0006-AB4F-2. S2CID 220366134.
  15. ^ "Crystal structure discovered almost 200 years ago could hold key to solar cell revolution". phys.org. Retrieved 4 July 2020.
  16. ^ Lin, Yen-Hung; Sakai, Nobuya; Da, Peimei; Wu, Jiaying; Sansom, Harry C.; Ramadan, Alexandra J.; Mahesh, Suhas; Liu, Junliang; Oliver, Robert D. J.; Lim, Jongchul; Aspitarte, Lee; Sharma, Kshama; Madhu, P. K.; Morales‐Vilches, Anna B.; Nayak, Pabitra K.; Bai, Sai; Gao, Feng; Grovenor, Chris R. M.; Johnston, Michael B.; Labram, John G.; Durrant, James R.; Ball, James M.; Wenger, Bernard; Stannowski, Bernd; Snaith, Henry J. (2 July 2020). "A piperidinium salt stabilizes efficient metal-halide perovskite solar cells" (PDF). Science. 369 (6499): 96–102. Bibcode:2020Sci...369...96L. doi:10.1126/science.aba1628. hdl:10044/1/82840. PMID 32631893. S2CID 220304363.
  17. ^ Cazzolla Gatti, Roberto; Velichevskaya, Alena (10 November 2020). "Certified "sustainable" palm oil took the place of endangered Bornean and Sumatran large mammals habitat and tropical forests in the last 30 years". Science of the Total Environment. 742: 140712. Bibcode:2020ScTEn.742n0712C. doi:10.1016/j.scitotenv.2020.140712. ISSN 0048-9697. PMID 32721759. S2CID 220852123. Retrieved 16 August 2020.
  18. ^ McNeil Jr., Donald G. (4 July 2020). "The Pandemic's Big Mystery: How Deadly Is the Coronavirus? - Even with more than 500,000 dead worldwide, scientists are struggling to learn how often the virus kills. Here's why". The New York Times. Retrieved 6 July 2020.
  19. ^ Mandavilli, Apoorva (4 July 2020). "239 Experts With One Big Claim: The Coronavirus Is Airborne - The W.H.O. has resisted mounting evidence that viral particles floating indoors are infectious, some scientists say. The agency maintains the research is still inconclusive". The New York Times. Retrieved 5 July 2020.
  20. ^ Rabie, Passant (6 July 2020). "Astronomers Have Found The Source Of Life In The Universe". Inverse. Retrieved 7 July 2020.
  21. ^ Marigo, Paola; Cummings, Jeffrey D.; Curtis, Jason Lee; Kalirai, Jason; Chen, Yang; Tremblay, Pier-Emmanuel; Ramirez-Ruiz, Enrico; Bergeron, Pierre; Bladh, Sara; Bressan, Alessandro; Girardi, Léo; Pastorelli, Giada; Trabucchi, Michele; Cheng, Sihao; Aringer, Bernhard; Tio, Piero Dal (6 July 2020). "Carbon star formation as seen through the non-monotonic initial–final mass relation". Nature Astronomy. 4 (11): 1102–1110. arXiv:2007.04163. Bibcode:2020NatAs...4.1102M. doi:10.1038/s41550-020-1132-1. S2CID 220403402.
  22. ^ "New video format 'halves data use of 4K and 8K TVs'". BBC News. 7 July 2020. Retrieved 9 July 2020.
  23. ^ "Fraunhofer Heinrich Hertz Institute HHI". newsletter.fraunhofer.de. Retrieved 17 August 2020.
  24. ^ "Simulations show magnetic field can change ~10 times faster than previously thought". phys.org. Retrieved 16 August 2020.
  25. ^ Davies, Christopher J.; Constable, Catherine G. (6 July 2020). "Rapid geomagnetic changes inferred from Earth observations and numerical simulations". Nature Communications. 11 (1): 3371. Bibcode:2020NatCo..11.3371D. doi:10.1038/s41467-020-16888-0. ISSN 2041-1723. PMC 7338531. PMID 32632222.
  26. ^ "New cobalt-free lithium-ion battery reduces costs without sacrificing performance". EurekAlert!. 15 July 2020. Retrieved 16 July 2020.
  27. ^ Li, Wangda; Lee, Steven; Manthiram, Arumugam (2020). "High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries". Advanced Materials. 32 (33): 2002718. Bibcode:2020AdM....3202718L. doi:10.1002/adma.202002718. ISSN 1521-4095. PMID 32627875.
  28. ^ a b "Spider silk made by photosynthetic bacteria". phys.org. Retrieved 16 August 2020.
  29. ^ "Scientists warn of potential wave of COVID-linked brain damage". Reuters. 8 July 2020. Retrieved 8 July 2020.
  30. ^ "Warning of serious brain disorders in people with mild coronavirus symptoms". The Guardian. 8 July 2020. Retrieved 8 July 2020.
  31. ^ "The powerhouses inside cells have been gene-edited for the first time". New Scientist. 8 July 2020. Retrieved 12 July 2020.
  32. ^ Mok, Beverly Y.; de Moraes, Marcos H.; Zeng, Jun; Bosch, Dustin E.; Kotrys, Anna V.; Raguram, Aditya; Hsu, FoSheng; Radey, Matthew C.; Peterson, S. Brook; Mootha, Vamsi K.; Mougous, Joseph D.; Liu, David R. (July 2020). "A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing". Nature. 583 (7817): 631–637. Bibcode:2020Natur.583..631M. doi:10.1038/s41586-020-2477-4. ISSN 1476-4687. PMC 7381381. PMID 32641830.
  33. ^ Woodyatt, Amy. "Global temperatures could exceed crucial 1.5 C target in the next five years". CNN. Retrieved 15 August 2020.
  34. ^ "New climate predictions assess global temperatures in coming five years". World Meteorological Organization. 8 July 2020. Retrieved 15 August 2020.
  35. ^ Foong, Choon Pin; Higuchi-Takeuchi, Mieko; Malay, Ali D.; Oktaviani, Nur Alia; Thagun, Chonprakun; Numata, Keiji (8 July 2020). "A marine photosynthetic microbial cell factory as a platform for spider silk production". Communications Biology. 3 (1). Springer Science and Business Media LLC: 357. doi:10.1038/s42003-020-1099-6. ISSN 2399-3642. PMC 7343832. PMID 32641733.
  36. ^ "Applying rock dust to croplands could absorb up to 2 billion tonnes of CO2 from the atmosphere". phys.org. Retrieved 16 August 2020.
  37. ^ Beerling, David J.; Kantzas, Euripides P.; Lomas, Mark R.; Wade, Peter; Eufrasio, Rafael M.; Renforth, Phil; Sarkar, Binoy; Andrews, M. Grace; James, Rachael H.; Pearce, Christopher R.; Mercure, Jean-Francois; Pollitt, Hector; Holden, Philip B.; Edwards, Neil R.; Khanna, Madhu; Koh, Lenny; Quegan, Shaun; Pidgeon, Nick F.; Janssens, Ivan A.; Hansen, James; Banwart, Steven A. (July 2020). "Potential for large-scale CO 2 removal via enhanced rock weathering with croplands". Nature. 583 (7815): 242–248. Bibcode:2020Natur.583..242B. doi:10.1038/s41586-020-2448-9. ISSN 1476-4687. PMID 32641817. S2CID 220417075. Archived from the original on 16 July 2020. Retrieved 16 August 2020. Alt URL
  38. ^ "Researchers build robot scientist that has already discovered a new catalyst". phys.org. Retrieved 16 August 2020.
  39. ^ Burger, Benjamin; Maffettone, Phillip M.; Gusev, Vladimir V.; Aitchison, Catherine M.; Bai, Yang; Wang, Xiaoyan; Li, Xiaobo; Alston, Ben M.; Li, Buyi; Clowes, Rob; Rankin, Nicola; Harris, Brandon; Sprick, Reiner Sebastian; Cooper, Andrew I. (July 2020). "A mobile robotic chemist". Nature. 583 (7815): 237–241. Bibcode:2020Natur.583..237B. doi:10.1038/s41586-020-2442-2. ISSN 1476-4687. PMID 32641813. S2CID 220420261. Retrieved 16 August 2020.
  40. ^ "WHO reverses, says COVID-19 can be airborne indoors". The Hill. 9 July 2020. Retrieved 10 July 2020.
  41. ^ "Transmission of SARS-CoV-2: implications for infection prevention precautions". WHO. 9 July 2020. Retrieved 10 July 2020.
  42. ^ a b "Researchers find younger age for Earth's moon". phys.org. 13 July 2020. Retrieved 16 August 2020.
  43. ^ Overbye, Dennis (10 July 2020). "Beyond the Milky Way, a Galactic Wall - Astronomers have discovered a vast assemblage of galaxies hidden behind our own, in the "zone of avoidance."". The New York Times. Retrieved 10 July 2020.
  44. ^ Pomerede, D.; et al. (January 2020). "The South Pole Wall". Harvard University. p. 453.01. Bibcode:2020AAS...23545301P.
  45. ^ Mann, Adam (10 July 2020). "Astronomers discover South Pole Wall, a gigantic structure stretching 1.4 billion light-years across". Live Science. Retrieved 10 July 2020.
  46. ^ Pomarède, Daniel; et al. (10 July 2020). "Cosmicflows-3: The South Pole Wall". The Astrophysical Journal. 897 (2): 133. arXiv:2007.04414. Bibcode:2020ApJ...897..133P. doi:10.3847/1538-4357/ab9952. S2CID 220425419.
  47. ^ "A 'regime shift' is happening in the Arctic Ocean, scientists say". phys.org. Retrieved 16 August 2020.
  48. ^ Lewis, K. M.; Dijken, G. L. van; Arrigo, K. R. (10 July 2020). "Changes in phytoplankton concentration now drive increased Arctic Ocean primary production". Science. 369 (6500): 198–202. doi:10.1126/science.aay8380. ISSN 0036-8075. PMID 32647002. S2CID 220433818. Retrieved 16 August 2020.
  49. ^ Lennon, Annie (13 July 2020). "Earth's Moon Had Magma Ocean for 200 Million Years". LabRoots. Retrieved 16 August 2020.
  50. ^ Maurice, M.; Tosi, N.; Schwinger, S.; Breuer, D.; Kleine, T. (10 July 2020). "A long-lived magma ocean on a young Moon". Science Advances. 6 (28): eaba8949. Bibcode:2020SciA....6.8949M. doi:10.1126/sciadv.aba8949. ISSN 2375-2548. PMC 7351470. PMID 32695879. S2CID 220478630.
  51. ^ a b "New solar material could clean drinking water". phys.org. Retrieved 16 August 2020.
  52. ^ Singh, Subhash C.; ElKabbash, Mohamed; Li, Zilong; Li, Xiaohan; Regmi, Bhabesh; Madsen, Matthew; Jalil, Sohail A.; Zhan, Zhibing; Zhang, Jihua; Guo, Chunlei (13 July 2020). "Solar-trackable super-wicking black metal panel for photothermal water sanitation". Nature Sustainability. 3 (11): 938–946. doi:10.1038/s41893-020-0566-x. ISSN 2398-9629. S2CID 220505911.
  53. ^ "Scientists achieve first complete assembly of human X chromosome". phys.org. Retrieved 16 August 2020.
  54. ^ Miga, Karen H.; Koren, Sergey; Rhie, Arang; Vollger, Mitchell R.; Gershman, Ariel; Bzikadze, Andrey; Brooks, Shelise; Howe, Edmund; Porubsky, David; Logsdon, Glennis A.; Schneider, Valerie A.; Potapova, Tamara; Wood, Jonathan; Chow, William; Armstrong, Joel; Fredrickson, Jeanne; Pak, Evgenia; Tigyi, Kristof; Kremitzki, Milinn; Markovic, Christopher; Maduro, Valerie; Dutra, Amalia; Bouffard, Gerard G.; Chang, Alexander M.; Hansen, Nancy F.; Wilfert, Amy B.; Thibaud-Nissen, Françoise; Schmitt, Anthony D.; Belton, Jon-Matthew; Selvaraj, Siddarth; Dennis, Megan Y.; Soto, Daniela C.; Sahasrabudhe, Ruta; Kaya, Gulhan; Quick, Josh; Loman, Nicholas J.; Holmes, Nadine; Loose, Matthew; Surti, Urvashi; Risques, Rosa ana; Lindsay, Tina A. Graves; Fulton, Robert; Hall, Ira; Paten, Benedict; Howe, Kerstin; Timp, Winston; Young, Alice; Mullikin, James C.; Pevzner, Pavel A.; Gerton, Jennifer L.; Sullivan, Beth A.; Eichler, Evan E.; Phillippy, Adam M. (14 July 2020). "Telomere-to-telomere assembly of a complete human X chromosome". Nature. 585 (7823): 79–84. Bibcode:2020Natur.585...79M. doi:10.1038/s41586-020-2547-7. ISSN 1476-4687. PMC 7484160. PMID 32663838. S2CID 220516572.
  55. ^ a b "Methane Emissions Continue to Rise". earthobservatory.nasa.gov. 14 July 2020. Retrieved 19 August 2020.
  56. ^ "Bacteria with a metal diet discovered in dirty glassware". phys.org. Retrieved 16 August 2020.
  57. ^ Woodyatt, Amy. "Bacteria that eats metal accidentally discovered by scientists". CNN. Retrieved 16 August 2020.
  58. ^ Yu, Hang; Leadbetter, Jared R. (July 2020). "Bacterial chemolithoautotrophy via manganese oxidation". Nature. 583 (7816): 453–458. Bibcode:2020Natur.583..453Y. doi:10.1038/s41586-020-2468-5. ISSN 1476-4687. PMC 7802741. PMID 32669693. S2CID 220541911.
  59. ^ "Global methane emissions soar to record high". phys.org. Retrieved 16 August 2020.
  60. ^ Jackson, R B; Saunois, M; Bousquet, P; Canadell, J G; Poulter, B; Stavert, A R; Bergamaschi, P; Niwa, Y; Segers, A; Tsuruta, A (14 July 2020). "Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources". Environmental Research Letters. 15 (7): 071002. Bibcode:2020ERL....15g1002J. doi:10.1088/1748-9326/ab9ed2. ISSN 1748-9326.
  61. ^ Saunois, Marielle; Stavert, Ann R.; Poulter, Ben; Bousquet, Philippe; Canadell, Josep G.; Jackson, Robert B.; Raymond, Peter A.; Dlugokencky, Edward J.; Houweling, Sander; Patra, Prabir K.; Ciais, Philippe; Arora, Vivek K.; Bastviken, David; Bergamaschi, Peter; Blake, Donald R.; Brailsford, Gordon; Bruhwiler, Lori; Carlson, Kimberly M.; Carrol, Mark; Castaldi, Simona; Chandra, Naveen; Crevoisier, Cyril; Crill, Patrick M.; Covey, Kristofer; Curry, Charles L.; Etiope, Giuseppe; Frankenberg, Christian; Gedney, Nicola; Hegglin, Michaela I.; et al. (15 July 2020). "The Global Methane Budget 2000–2017". Earth System Science Data. 12 (3): 1561–1623. Bibcode:2020ESSD...12.1561S. doi:10.5194/essd-12-1561-2020. ISSN 1866-3508. Retrieved 19 August 2020.
  62. ^ a b "Blood iron levels could be key to slowing ageing, gene study shows". phys.org. Retrieved 18 August 2020.
  63. ^ Timmers, Paul R. H. J.; Wilson, James F.; Joshi, Peter K.; Deelen, Joris (16 July 2020). "Multivariate genomic scan implicates novel loci and haem metabolism in human ageing". Nature Communications. 11 (1): 3570. Bibcode:2020NatCo..11.3570T. doi:10.1038/s41467-020-17312-3. ISSN 2041-1723. PMC 7366647. PMID 32678081.
  64. ^ "Researchers discover 2 paths of aging and new insights on promoting healthspan". phys.org. Retrieved 17 August 2020.
  65. ^ Li, Yang; Jiang, Yanfei; Paxman, Julie; O'Laughlin, Richard; Klepin, Stephen; Zhu, Yuelian; Pillus, Lorraine; Tsimring, Lev S.; Hasty, Jeff; Hao, Nan (2020). "A programmable fate decision landscape underlies single-cell aging in yeast". Science. 369 (6501): 325–329. Bibcode:2020Sci...369..325L. doi:10.1126/science.aax9552. PMC 7437498. PMID 32675375.
  66. ^ "Largest-ever 3D map of the universe released by scientists". Sky News. Retrieved 18 August 2020.
  67. ^ "No need to Mind the Gap: Astrophysicists fill in 11 billion years of our universe's expansion history". SDSS. Retrieved 18 August 2020.
  68. ^ a b Wall, Mike (22 July 2020). "Multiplanet system around sunlike star photographed for 1st time ever - The two newly imaged planets are huge — 14 and 6 times more massive than Jupiter". Space.com. Retrieved 22 July 2020.
  69. ^ a b Carrington, Damian (21 July 2020). "First active leak of sea-bed methane discovered in Antarctica". The Guardian. Retrieved 16 August 2020.
  70. ^ Bohn, Alexander; et al. (22 July 2020). "Two Directly Imaged, Wide-orbit Giant Planets around the Young, Solar Analog TYC 8998-760-1" (PDF). The Astrophysical Journal Letters. 898 (1): L16. arXiv:2007.10991. Bibcode:2020ApJ...898L..16B. doi:10.3847/2041-8213/aba27e. S2CID 220686536.
  71. ^ "Earliest evidence for humans in the Americas". BBC News. 22 July 2020. Retrieved 22 July 2020.
  72. ^ Ardelean, Ciprian F.; Becerra-Valdivia, Lorena; Pedersen, Mikkel Winther; Schwenninger, Jean-Luc; Oviatt, Charles G.; Macías-Quintero, Juan I.; Arroyo-Cabrales, Joaquin; Sikora, Martin; Ocampo-Díaz, Yam Zul E.; Rubio-Cisneros, Igor I.; Watling, Jennifer G.; de Medeiros, Vanda B.; De Oliveira, Paulo E.; Barba-Pingarón, Luis; Ortiz-Butrón, Agustín; Blancas-Vázquez, Jorge; Rivera-González, Irán; Solís-Rosales, Corina; Rodríguez-Ceja, María; Gandy, Devlin A.; Navarro-Gutierrez, Zamara; De La Rosa-Díaz, Jesús J.; Huerta-Arellano, Vladimir; Marroquín-Fernández, Marco B.; Martínez-Riojas, L. Martin; López-Jiménez, Alejandro; Higham, Thomas; Willerslev, Eske (August 2020). "Evidence of human occupation in Mexico around the Last Glacial Maximum". Nature. 584 (7819): 87–92. Bibcode:2020Natur.584...87A. doi:10.1038/s41586-020-2509-0. ISSN 1476-4687. PMID 32699412. S2CID 220697089. Retrieved 18 August 2020.
  73. ^ Thurber, Andrew R.; Seabrook, Sarah; Welsh, Rory M. (29 July 2020). "Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean". Proceedings of the Royal Society B: Biological Sciences. 287 (1931): 20201134. doi:10.1098/rspb.2020.1134. PMC 7423672. PMID 32693727.
  74. ^ "Chemists make tough plastics recyclable". phys.org. Retrieved 17 August 2020.
  75. ^ Shieh, Peyton; Zhang, Wenxu; Husted, Keith E. L.; Kristufek, Samantha L.; Xiong, Boya; Lundberg, David J.; Lem, Jet; Veysset, David; Sun, Yuchen; Nelson, Keith A.; Plata, Desiree L.; Johnson, Jeremiah A. (July 2020). "Cleavable comonomers enable degradable, recyclable thermoset plastics". Nature. 583 (7817): 542–547. Bibcode:2020Natur.583..542S. doi:10.1038/s41586-020-2495-2. ISSN 1476-4687. PMC 7384294. PMID 32699399.
  76. ^ "Sharks almost gone from many reefs". phys.org. Retrieved 17 August 2020.
  77. ^ MacNeil, M. Aaron; Chapman, Demian D.; Heupel, Michelle; Simpfendorfer, Colin A.; Heithaus, Michael; Meekan, Mark; Harvey, Euan; Goetze, Jordan; Kiszka, Jeremy; Bond, Mark E.; Currey-Randall, Leanne M.; Speed, Conrad W.; Sherman, C. Samantha; Rees, Matthew J.; Udyawer, Vinay; Flowers, Kathryn I.; Clementi, Gina; Valentin-Albanese, Jasmine; Gorham, Taylor; Adam, M. Shiham; Ali, Khadeeja; Pina-Amargós, Fabián; Angulo-Valdés, Jorge A.; Asher, Jacob; Barcia, Laura García; Beaufort, Océane; Benjamin, Cecilie; Bernard, Anthony T. F.; Berumen, Michael L.; et al. (July 2020). "Global status and conservation potential of reef sharks". Nature. 583 (7818): 801–806. Bibcode:2020Natur.583..801M. doi:10.1038/s41586-020-2519-y. hdl:10754/664495. ISSN 1476-4687. PMID 32699418. S2CID 220696105. Retrieved 17 August 2020.
  78. ^ "Paper describing hummingbird-sized dinosaur retracted". phys.org. Retrieved 18 August 2020.
  79. ^ Xing, Lida; O’Connor, Jingmai K.; Schmitz, Lars; Chiappe, Luis M.; McKellar, Ryan C.; Yi, Qiru; Li, Gang (22 July 2020). "Retraction Note: Hummingbird-sized dinosaur from the Cretaceous period of Myanmar". Nature. 584 (7822): 652. Bibcode:2020Natur.584..652X. doi:10.1038/s41586-020-2553-9. ISSN 1476-4687. PMID 32699407. S2CID 220715846.
  80. ^ Lin, Dacheng (25 July 2020). "ATel #13895: ASASSN-20hx is a Hard Tidal Disruption Event Candidate". The Astronomer's Telegram. Retrieved 25 July 2020.
  81. ^ Hinkle, J.T.; et al. (24 July 2020). "Atel #13893: Classification of ASASSN-20hx as a Tidal Disruption Event Candidate". The Astronomer's Telegram. Retrieved 24 July 2020.
  82. ^ Lancaster University (24 July 2020). "Sci-fi foretold social media, Uber and Augmented Reality, offers insights into the future - Science fiction authors can help predict future consumer patterns". EurekAlert!. Retrieved 26 July 2020.
  83. ^ Ryder, Mike (26 July 2020). Citizen robots:biopolitics, the computer, and the Vietnam period. Lancaster University (phd). Lancaster University. Retrieved 26 July 2020.
  84. ^ Ryder, M.J. (23 July 2020). "Lessons from science fiction: Frederik Pohl and the robot prosumer" (PDF). Journal of Consumer Culture. 22: 246–263. doi:10.1177/1469540520944228.
  85. ^ "Machine learning reveals recipe for building artificial proteins". phys.org. Retrieved 17 August 2020.
  86. ^ Russ, William P.; Figliuzzi, Matteo; Stocker, Christian; Barrat-Charlaix, Pierre; Socolich, Michael; Kast, Peter; Hilvert, Donald; Monasson, Remi; Cocco, Simona; Weigt, Martin; Ranganathan, Rama (2020). "An evolution-based model for designing chorismatemutase enzymes". Science. 369 (6502): 440–445. Bibcode:2020Sci...369..440R. doi:10.1126/science.aba3304. PMID 32703877. S2CID 220714458.
  87. ^ "Artificial intelligence identifies prostate cancer with near-perfect accuracy". EurekAlert!. 27 July 2020. Retrieved 29 July 2020.
  88. ^ Pantanowitz, Liron; Quiroga-Garza, Gabriela M.; Bien, Lilach; Heled, Ronen; Laifenfeld, Daphna; Linhart, Chaim; Sandbank, Judith; Albrecht Shach, Anat; Shalev, Varda; Vecsler, Manuela; Michelow, Pamela; Hazelhurst, Scott; Dhir, Rajiv (1 August 2020). "An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study". The Lancet Digital Health. 2 (8): e407–e416. doi:10.1016/S2589-7500(20)30159-X. ISSN 2589-7500. PMID 33328045.
  89. ^ a b Wu, Katherine J. (28 July 2020). "These Microbes May Have Survived 100 Million Years Beneath the Seafloor - Rescued from their cold, cramped and nutrient-poor homes, the bacteria awoke in the lab and grew". The New York Times. Retrieved 31 July 2020.
  90. ^ Morono, Yuki; et al. (28 July 2020). "Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years". Nature Communications. 11 (3626): 3626. Bibcode:2020NatCo..11.3626M. doi:10.1038/s41467-020-17330-1. PMC 7387439. PMID 32724059.
  91. ^ "World's largest nuclear fusion project begins assembly in France". The Guardian. 28 July 2020. Retrieved 28 July 2020.
  92. ^ a b "Nobel prize-winning work is concentrated in minority of scientific fields". phys.org. Retrieved 17 August 2020.
  93. ^ "NA62 experiment at CERN reports first evidence for ultra-rare process that could lead to new physics". phys.org. Retrieved 17 August 2020.
  94. ^ "'Fool's gold' may be valuable after all". phys.org. Retrieved 17 August 2020.
  95. ^ Walter, Jeff; Voigt, Bryan; Day-Roberts, Ezra; Heltemes, Kei; Fernandes, Rafael M.; Birol, Turan; Leighton, Chris (1 July 2020). "Voltage-induced ferromagnetism in a diamagnet". Science Advances. 6 (31): eabb7721. Bibcode:2020SciA....6.7721W. doi:10.1126/sciadv.abb7721. ISSN 2375-2548. PMC 7439324. PMID 32832693. S2CID 220938415.
  96. ^ Ioannidis, John P. A.; Cristea, Ioana-Alina; Boyack, Kevin W. (29 July 2020). "Work honored by Nobel prizes clusters heavily in a few scientific fields". PLOS ONE. 15 (7): e0234612. Bibcode:2020PLoSO..1534612I. doi:10.1371/journal.pone.0234612. ISSN 1932-6203. PMC 7390258. PMID 32726312.
  97. ^ "Mystery solved: Scientists trace source of Stonehenge boulders". phys.org. Retrieved 17 August 2020.
  98. ^ Nash, David J.; Ciborowski, T. Jake R.; Ullyott, J. Stewart; Pearson, Mike Parker; Darvill, Timothy; Greaney, Susan; Maniatis, Georgios; Whitaker, Katy A. (1 July 2020). "Origins of the sarsen megaliths at Stonehenge". Science Advances. 6 (31): eabc0133. Bibcode:2020SciA....6..133N. doi:10.1126/sciadv.abc0133. ISSN 2375-2548. PMC 7439454. PMID 32832694. S2CID 220937543.
  99. ^ "Canadian ice caps disappear, confirming 2017 scientific prediction". phys.org. Retrieved 17 August 2020.
  100. ^ "Texas cave sediment upends meteorite explanation for global cooling". phys.org. Retrieved 18 August 2020.
  101. ^ Sun, N.; Brandon, A. D.; Forman, S. L.; Waters, M. R.; Befus, K. S. (1 July 2020). "Volcanic origin for Younger Dryas geochemical anomalies ca. 12,900 cal B.P." Science Advances. 6 (31): eaax8587. Bibcode:2020SciA....6.8587S. doi:10.1126/sciadv.aax8587. ISSN 2375-2548. PMC 7399481. PMID 32789166.
  102. ^ a b "Fires in Brazil's Amazon rainforest surge in July, worst in recent days". Reuters. 7 August 2020. Retrieved 9 September 2020.
  103. ^ "A New Tool for Tracking Amazon Fires". earthobservatory.nasa.gov. 19 August 2020. Retrieved 14 September 2020.
  104. ^ "Brazilian Amazon protected areas 'in flames' as land-grabbers invade". Mongabay Environmental News. 7 August 2020. Retrieved 9 September 2020.
  105. ^ Pedroso, Rodrigo; Reverdosa, Marcia. "Bolsonaro says reports of Amazon fires are a 'lie.' Evidence says otherwise". CNN. Retrieved 9 September 2020.
  106. ^ "Scientists discover new vulnerability in coronavirus". cnbctv18.com. Retrieved 7 September 2020.
  107. ^ "Research exposes new vulnerability for SARS-CoV-2". phys.org. Retrieved 7 September 2020.
  108. ^ Qiao, Baofu; Olvera de la Cruz, Monica (25 August 2020). "Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites". ACS Nano. 14 (8): 10616–10623. doi:10.1021/acsnano.0c04798. ISSN 1936-0851. PMC 7409923. PMID 32806067. S2CID 221008555.
  109. ^ "Early Mars was covered in ice sheets, not flowing rivers: study". phys.org. Retrieved 6 September 2020.
  110. ^ Crane, Leah. "Ancient valleys on Mars may have been carved by glaciers". New Scientist. Retrieved 6 September 2020.
  111. ^ Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R. (3 August 2020). "Valley formation on early Mars by subglacial and fluvial erosion". Nature Geoscience. 13 (10): 663–668. Bibcode:2020NatGe..13..663G. doi:10.1038/s41561-020-0618-x. ISSN 1752-0908. S2CID 220939044. Retrieved 6 September 2020.
  112. ^ "CERN experiments announce first indications of a rare Higgs boson process". Phys.org. 4 August 2020. Retrieved 5 August 2020.
  113. ^ Starr, Michelle (28 August 2020). "There's a Strange Glow in The Centre of Our Galaxy, And It's Not What We Thought It Was". ScienceAlert.com. Retrieved 28 August 2020.
  114. ^ Abazajian, Kevork N.; et al. (4 August 2020). "Strong constraints on thermal relic dark matter from Fermi-LAT observations of the Galactic Center". Physical Review D. 102 (43012): 043012. arXiv:2003.10416. Bibcode:2020PhRvD.102d3012A. doi:10.1103/PhysRevD.102.043012. S2CID 214611884.
  115. ^ "Throng of new penguin colonies in Antarctica spotted from space". The Guardian. 5 August 2020. Retrieved 5 August 2020.
  116. ^ "Scientists discover new penguin colonies from space". British Antarctic Survey. 5 August 2020. Retrieved 5 August 2020.
  117. ^ Weston, Phoebe (5 August 2020). "New Guinea has greatest plant diversity of any island in the world, study reveals". The Guardian. Retrieved 13 September 2020.
  118. ^ a b Cámara-Leret, Rodrigo; Frodin, David G.; Adema, Frits; Anderson, Christiane; Appelhans, Marc S.; Argent, George; Arias Guerrero, Susana; Ashton, Peter; Baker, William J.; Barfod, Anders S.; Barrington, David (August 2020). "New Guinea has the world's richest island flora". Nature. 584 (7822): 579–583. Bibcode:2020Natur.584..579C. doi:10.1038/s41586-020-2549-5. ISSN 1476-4687. PMID 32760001. S2CID 220980697.
  119. ^ Warburton, Moira (6 August 2020). "Canada's last fully intact Arctic ice shelf collapses". Reuters. Retrieved 11 September 2020.
  120. ^ "Canada's last fully intact Arctic ice shelf collapses". Arctic Today. 7 August 2020. Retrieved 9 August 2020.
  121. ^ "Chemists create the brightest-ever fluorescent materials". phys.org. Retrieved 6 September 2020.
  122. ^ "Scientists create the brightest fluorescent materials in existence". New Atlas. 7 August 2020. Retrieved 6 September 2020.
  123. ^ "Scientists create 'brightest known materials in existence'". www.independent.co.uk. Retrieved 6 September 2020.
  124. ^ Benson, Christopher R.; Kacenauskaite, Laura; VanDenburgh, Katherine L.; Zhao, Wei; Qiao, Bo; Sadhukhan, Tumpa; Pink, Maren; Chen, Junsheng; Borgi, Sina; Chen, Chun-Hsing; Davis, Brad J.; Simon, Yoan C.; Raghavachari, Krishnan; Laursen, Bo W.; Flood, Amar H. (6 August 2020). "Plug-and-Play Optical Materials from Fluorescent Dyes and Macrocycles". Chem. 6 (8): 1978–1997. doi:10.1016/j.chempr.2020.06.029. ISSN 2451-9294.