Poisson-Approximation

Van Wikipedia, de gratis encyclopedie

Vergleich der Poisson-Verteilung (schwarze Linien) und der Binomialverteilung mit (rote Kreise), (blaue Kreise), (grüne Kreise). Alle Verteilungen haben einen Erwartungswert von 5. Die horizontale Achse zeigt die Anzahl der eingetretenen Ereignisse . Je größer wird, umso besser ist die Approximation der Binomialverteilung durch die Poisson-Verteilung.

Die Poisson-Approximation ist in der Wahrscheinlichkeitsrechnung eine Möglichkeit, die Binomialverteilung und die verallgemeinerte Binomialverteilung für große Stichproben und kleine Wahrscheinlichkeiten durch die Poisson-Verteilung anzunähern. Durch den Grenzübergang nach unendlich erhält man dann die Konvergenz in Verteilung der beiden Binomialverteilungen gegen die Poisson-Verteilung.

Formulierung[Bearbeiten | Quelltext bearbeiten]

Ist eine Folge binomialverteilter Zufallsvariablen mit Parametern und , sodass für die Erwartungswerte für gilt, dann folgt

für .

Beweis-Skizze[Bearbeiten | Quelltext bearbeiten]

Der Wert einer Poisson-verteilten Zufallsvariable an der Stelle ist der Grenzwert einer Binomialverteilung mit an der Stelle :

Bei großen Stichproben und kleinem lässt sich folglich die Binomialverteilung gut durch die Poisson-Verteilung approximieren.

Die Darstellung als Grenzwert der Binomialverteilung erlaubt eine alternative Berechnung von Erwartungswert und Varianz der Poisson-Verteilung. Seien unabhängige bernoulliverteilte Zufallsvariablen mit und sei . Für gilt und

Güte der Approximation[Bearbeiten | Quelltext bearbeiten]

Für die Fehlerabschätzung gilt

.

Die Approximation einer Summe von Bernoulli-verteilten Zufallsvariablen (bzw. einer binomialverteilten Zufallsvariable) ist also insbesondere für kleine gut. Als Faustregel gilt, dass die Approximation gut ist, wenn und gilt. Ist , so ist die Normal-Approximation besser geeignet.

Le Cams Verallgemeinerung[Bearbeiten | Quelltext bearbeiten]

Allgemeiner lässt sich Folgendes zeigen: Sind stochastisch unabhängige Zufallsvariablen mit (Jede Zufallsvariable ist also Bernoulli-verteilt). Dann ist

verallgemeinert binomialverteilt und es ist

.

Dann gilt

.

Im Englischen ist dieses Resultat als „Ungleichung von Le Cam“ (Le Cam's Inequality) bekannt.[1]

Gilt für alle , so ist binomialverteilt und das obige Ergebnis folgt sofort.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Ein Individuum einer Spezies zeugt Nachkommen, die alle stochastisch unabhängig voneinander mit einer Wahrscheinlichkeit von das geschlechtsreife Alter erreichen. Interessiert ist man nun an der Wahrscheinlichkeit, dass zwei oder mehr Nachkommen das geschlechtsreife Alter erreichen.

Exakte Lösung[Bearbeiten | Quelltext bearbeiten]

Sei die Zufallsvariable „Der -te Nachkomme erreicht das geschlechtsreife Alter“. Es gilt und für alle . Dann ist die Anzahl der überlebenden Nachkommen aufgrund der stochastischen Unabhängigkeit -verteilt. Zur Modellierung definiert man den Wahrscheinlichkeitsraum mit der Ergebnismenge , der Anzahl der überlebenden geschlechtsreifen Nachkommen. Die σ-Algebra ist dann kanonisch die Potenzmenge der Ergebnismenge: und als Wahrscheinlichkeitsverteilung die Binomialverteilung: . Gesucht ist . Es erreichen also mit einer Wahrscheinlichkeit von ca. 26 % mindestens zwei Individuen das geschlechtsreife Alter.

Approximierte Lösung[Bearbeiten | Quelltext bearbeiten]

Da ausreichend groß und ausreichend klein ist, lässt sich die Binomialverteilung genügend genau mittels der Poisson-Verteilung annähern. Diesmal ist der Wahrscheinlichkeitsraum definiert mittels des Ergebnisraums , der -Algebra und der Poisson-Verteilung als Wahrscheinlichkeitsverteilung mit dem Parameter . Man beachte hier, dass die beiden modellierten Wahrscheinlichkeitsräume unterschiedlich sind, da die Poisson-Verteilung auf einem endlichen Ergebnisraum keine Wahrscheinlichkeitsverteilung definiert. Die Wahrscheinlichkeit, dass mindestens zwei Individuen das geschlechtsreife Alter erreichen, ist also .

Bis auf vier Nachkommastellen stimmt also die exakte Lösung mit der Poisson-Approximation überein.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Eric W. Weisstein: Le Cam's Inequality. In: Mathworld. Abgerufen am 18. November 2023.