Dirac-Verteilung

Van Wikipedia, de gratis encyclopedie

Die Dirac-Verteilung oder Einpunktverteilung[1][2][3], manchmal auch Punktverteilung[4], ausgeartete Verteilung[1], entartete Verteilung[1], uneigentliche Verteilung[1], deterministische Verteilung, Einheitsmasse[5] oder degenerierte Verteilung genannt, ist eine spezielle Wahrscheinlichkeitsverteilung in der Stochastik. Sie zählt zu den diskreten Wahrscheinlichkeitsverteilungen. Der Name Dirac-Verteilung folgt daher, dass sie aus dem Diracmaß abgeleitet wird. Sie ist meist nur von theoretischer Bedeutung und spielt eine wichtige Rolle in der Klassifikation der unendlich teilbaren Verteilungen.

Definition[Bearbeiten | Quelltext bearbeiten]

Die Verteilungsfunktion von

Eine reelle Zufallsvariable heißt Dirac-verteilt zum Punkt , in Symbolen , wenn sie die Verteilungsfunktion

besitzt. Die Verteilung von ist also genau das Diracmaß im Punkt , das heißt für alle messbaren Mengen gilt

Die Zufallsvariable nimmt insbesondere fast sicher den Wert an, es gilt also , worauf der Name deterministische Verteilung zurückzuführen ist.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Lagemaße[Bearbeiten | Quelltext bearbeiten]

Erwartungswert, Modus und Median fallen alle zusammen und sind gleich dem Punkt

Streumaße[Bearbeiten | Quelltext bearbeiten]

Varianz, Standardabweichung und Variationskoeffizient fallen zusammen und sind alle gleich

Symmetrie[Bearbeiten | Quelltext bearbeiten]

Die Dirac-Verteilung ist symmetrisch um .

Höhere Momente[Bearbeiten | Quelltext bearbeiten]

Die Momente sind gegeben durch

Entropie[Bearbeiten | Quelltext bearbeiten]

Die Entropie der Dirac-Verteilung ist 0.

Kumulanten[Bearbeiten | Quelltext bearbeiten]

Die kumulantenerzeugende Funktion ist

.

Damit ist und alle weiteren Kumulanten sind gleich 0.

Charakteristische Funktion[Bearbeiten | Quelltext bearbeiten]

Die charakteristische Funktion ist

Momenterzeugende Funktion[Bearbeiten | Quelltext bearbeiten]

Die momenterzeugende Funktion ist

Reproduktivität, α-Stabilität und unendliche Teilbarkeit[Bearbeiten | Quelltext bearbeiten]

Die Klasse der Dirac-Verteilungen ist reproduktiv, da die Summe Dirac-verteilter Zufallsvariablen wieder Dirac-verteilt ist, da für die Faltung

gilt. Des Weiteren sind Dirac-Verteilungen α-stabile Verteilungen mit . Teilweise werden aber Dirac-Verteilungen explizit von der Definition der α-Stabilität ausgeschlossen. Außerdem sind Dirac-Verteilungen unendlich teilbar, da gilt.

Beziehung zu anderen Verteilungen[Bearbeiten | Quelltext bearbeiten]

Die Dirac-Verteilung tritt meist als degenerierter Fall bei schlechter Parameterwahl von anderen Verteilungen auf. Beispielsweise sind die Bernoulli-Verteilung, die Zweipunktverteilung und die Binomialverteilung alles Dirac-Verteilungen, wenn man wählt. Des Weiteren ist auch die diskrete Gleichverteilung auf einem Punkt eine Dirac-Verteilung.

Beziehung zur Delta-Distribution[Bearbeiten | Quelltext bearbeiten]

Insbesondere in der Physik und Technik werden verallgemeinerte Funktionen im Sinn von Distributionen verwendet, die als mathematische Objekte weder Funktionen noch Wahrscheinlichkeitsverteilungen sind. Die Delta-Distribution (oder Dirac-Funktion) auf den reellen Zahlen ist das Objekt mit der Eigenschaft

für eine große Klasse von Funktionen . Für eine Zufallsvariable mit einer Dirac-Verteilung an der Stelle können die Wahrscheinlichkeiten für ein Ereignis mit Hilfe der Delta-Distribution formal als

geschrieben werden. Damit verhält sich formal wie eine Dichtefunktion, obwohl die Dirac-Verteilung keine Dichtefunktion bezüglich des Lebesgue-Maßes besitzt.

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d P. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, Einpunktverteilung, S. 81.
  2. Horst Rinne: Taschenbuch der Statistik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2008, ISBN 978-3-8171-1827-4, 3.12.1 Einpunkt-Verteilung, S. 369.
  3. Hermann Witting, Ulrich Müller-Funk: Mathematische Statistik II. Asymptotische Statistik: Parametrische Modelle und nichtparametrische Funktionale. Teubner, Stuttgart 1995, ISBN 978-3-322-90153-8, S. 46.
  4. Achim Klenke: Wahrscheinlichkeitstheorie. 4., überarbeitete und ergänzte Auflage. Springer, Berlin 2020, ISBN 978-3-662-62088-5, S. 369, doi:10.1007/978-3-662-62089-2.
  5. Georgii: Stochastik. 2009, S. 14.