In mathematics , the Vitali–Hahn–Saks theorem , introduced by Vitali (1907 ), Hahn (1922 ), and Saks (1933 ), proves that under some conditions a sequence of measures converging point-wise does so uniformly and the limit is also a measure.
Statement of the theorem [ edit ] If ( S , B , m ) {\displaystyle (S,{\mathcal {B}},m)} is a measure space with m ( S ) < ∞ , {\displaystyle m(S)<\infty ,} and a sequence λ n {\displaystyle \lambda _{n}} of complex measures . Assuming that each λ n {\displaystyle \lambda _{n}} is absolutely continuous with respect to m , {\displaystyle m,} and that for all B ∈ B {\displaystyle B\in {\mathcal {B}}} the finite limits exist lim n → ∞ λ n ( B ) = λ ( B ) {\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)} . Then the absolute continuity of the λ n {\displaystyle \lambda _{n}} with respect to m {\displaystyle m} is uniform in n {\displaystyle n} , that is, lim B m ( B ) = 0 {\displaystyle \lim _{B}m(B)=0} implies that lim B λ n ( B ) = 0 {\displaystyle \lim _{B}\lambda _{n}(B)=0} uniformly in n {\displaystyle n} . Also λ {\displaystyle \lambda } is countably additive on B {\displaystyle {\mathcal {B}}} .
Given a measure space ( S , B , m ) , {\displaystyle (S,{\mathcal {B}},m),} a distance can be constructed on B 0 , {\displaystyle {\mathcal {B}}_{0},} the set of measurable sets B ∈ B {\displaystyle B\in {\mathcal {B}}} with m ( B ) < ∞ . {\displaystyle m(B)<\infty .} This is done by defining
d ( B 1 , B 2 ) = m ( B 1 Δ B 2 ) , {\displaystyle d(B_{1},B_{2})=m(B_{1}\Delta B_{2}),} where B 1 Δ B 2 = ( B 1 ∖ B 2 ) ∪ ( B 2 ∖ B 1 ) {\displaystyle B_{1}\Delta B_{2}=(B_{1}\setminus B_{2})\cup (B_{2}\setminus B_{1})} is the symmetric difference of the sets B 1 , B 2 ∈ B 0 . {\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}.} This gives rise to a metric space B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} by identifying two sets B 1 , B 2 ∈ B 0 {\displaystyle B_{1},B_{2}\in {\mathcal {B}}_{0}} when m ( B 1 Δ B 2 ) = 0. {\displaystyle m(B_{1}\Delta B_{2})=0.} Thus a point B ¯ ∈ B 0 ~ {\displaystyle {\overline {B}}\in {\tilde {{\mathcal {B}}_{0}}}} with representative B ∈ B 0 {\displaystyle B\in {\mathcal {B}}_{0}} is the set of all B 1 ∈ B 0 {\displaystyle B_{1}\in {\mathcal {B}}_{0}} such that m ( B Δ B 1 ) = 0. {\displaystyle m(B\Delta B_{1})=0.}
Proposition: B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} with the metric defined above is a complete metric space .
Proof: Let χ B ( x ) = { 1 , x ∈ B 0 , x ∉ B {\displaystyle \chi _{B}(x)={\begin{cases}1,&x\in B\\0,&x\notin B\end{cases}}} Then d ( B 1 , B 2 ) = ∫ S | χ B 1 ( s ) − χ B 2 ( x ) | d m {\displaystyle d(B_{1},B_{2})=\int _{S}|\chi _{B_{1}}(s)-\chi _{B_{2}}(x)|dm} This means that the metric space B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} can be identified with a subset of the Banach space L 1 ( S , B , m ) {\displaystyle L^{1}(S,{\mathcal {B}},m)} .
Let B n ∈ B 0 {\displaystyle B_{n}\in {\mathcal {B}}_{0}} , with lim n , k → ∞ d ( B n , B k ) = lim n , k → ∞ ∫ S | χ B n ( x ) − χ B k ( x ) | d m = 0 {\displaystyle \lim _{n,k\to \infty }d(B_{n},B_{k})=\lim _{n,k\to \infty }\int _{S}|\chi _{B_{n}}(x)-\chi _{B_{k}}(x)|dm=0} Then we can choose a sub-sequence χ B n ′ {\displaystyle \chi _{B_{n'}}} such that lim n ′ → ∞ χ B n ′ ( x ) = χ ( x ) {\displaystyle \lim _{n'\to \infty }\chi _{B_{n'}}(x)=\chi (x)} exists almost everywhere and lim n ′ → ∞ ∫ S | χ ( x ) − χ B n ′ ( x ) | d m = 0 {\displaystyle \lim _{n'\to \infty }\int _{S}|\chi (x)-\chi _{B_{n'}(x)}|dm=0} . It follows that χ = χ B ∞ {\displaystyle \chi =\chi _{B_{\infty }}} for some B ∞ ∈ B 0 {\displaystyle B_{\infty }\in {\mathcal {B}}_{0}} (furthermore χ ( x ) = 1 {\displaystyle \chi (x)=1} if and only if χ B n ′ ( x ) = 1 {\displaystyle \chi _{B_{n'}}(x)=1} for n ′ {\displaystyle n'} large enough, then we have that B ∞ = lim inf n ′ → ∞ B n ′ = ⋃ n ′ = 1 ∞ ( ⋂ m = n ′ ∞ B m ) {\displaystyle B_{\infty }=\liminf _{n'\to \infty }B_{n'}={\bigcup _{n'=1}^{\infty }}\left({\bigcap _{m=n'}^{\infty }}B_{m}\right)} the limit inferior of the sequence) and hence lim n → ∞ d ( B ∞ , B n ) = 0. {\displaystyle \lim _{n\to \infty }d(B_{\infty },B_{n})=0.} Therefore, B 0 ~ {\displaystyle {\tilde {{\mathcal {B}}_{0}}}} is complete.
Proof of Vitali-Hahn-Saks theorem [ edit ] Each λ n {\displaystyle \lambda _{n}} defines a function λ ¯ n ( B ¯ ) {\displaystyle {\overline {\lambda }}_{n}({\overline {B}})} on B ~ {\displaystyle {\tilde {\mathcal {B}}}} by taking λ ¯ n ( B ¯ ) = λ n ( B ) {\displaystyle {\overline {\lambda }}_{n}({\overline {B}})=\lambda _{n}(B)} . This function is well defined, this is it is independent on the representative B {\displaystyle B} of the class B ¯ {\displaystyle {\overline {B}}} due to the absolute continuity of λ n {\displaystyle \lambda _{n}} with respect to m {\displaystyle m} . Moreover λ ¯ n {\displaystyle {\overline {\lambda }}_{n}} is continuous.
For every ϵ > 0 {\displaystyle \epsilon >0} the set F k , ϵ = { B ¯ ∈ B ~ : sup n ≥ 1 | λ ¯ k ( B ¯ ) − λ ¯ k + n ( B ¯ ) | ≤ ϵ } {\displaystyle F_{k,\epsilon }=\{{\overline {B}}\in {\tilde {\mathcal {B}}}:\ \sup _{n\geq 1}|{\overline {\lambda }}_{k}({\overline {B}})-{\overline {\lambda }}_{k+n}({\overline {B}})|\leq \epsilon \}} is closed in B ~ {\displaystyle {\tilde {\mathcal {B}}}} , and by the hypothesis lim n → ∞ λ n ( B ) = λ ( B ) {\displaystyle \lim _{n\to \infty }\lambda _{n}(B)=\lambda (B)} we have that B ~ = ⋃ k = 1 ∞ F k , ϵ {\displaystyle {\tilde {\mathcal {B}}}=\bigcup _{k=1}^{\infty }F_{k,\epsilon }} By Baire category theorem at least one F k 0 , ϵ {\displaystyle F_{k_{0},\epsilon }} must contain a non-empty open set of B ~ {\displaystyle {\tilde {\mathcal {B}}}} . This means that there is B 0 ∈ B {\displaystyle B_{0}\in {\mathcal {B}}} and a δ > 0 {\displaystyle \delta >0} such that d ( B , B 0 ) < δ ⇒ sup n ≥ 1 | λ ¯ k 0 ( B ¯ ) − λ ¯ k 0 + n ( B ¯ ) | ≤ ϵ . {\displaystyle d(B,B_{0})<\delta \Rightarrow \sup _{n\geq 1}|{\overline {\lambda }}_{k_{0}}({\overline {B}})-{\overline {\lambda }}_{k_{0}+n}({\overline {B}})|\leq \epsilon .} On the other hand, any B ∈ B {\displaystyle B\in {\mathcal {B}}} with m ( B ) ≤ δ {\displaystyle m(B)\leq \delta } can be represented as B = B 1 ∖ B 2 {\displaystyle B=B_{1}\setminus B_{2}} with d ( B 1 , B 0 ) ≤ δ {\displaystyle d(B_{1},B_{0})\leq \delta } and d ( B 2 , B 0 ) ≤ δ {\displaystyle d(B_{2},B_{0})\leq \delta } . This can be done, for example by taking B 1 = B ∪ B 0 {\displaystyle B_{1}=B\cup B_{0}} and B 2 = B 0 ∖ ( B ∩ B 0 ) {\displaystyle B_{2}=B_{0}\setminus (B\cap B_{0})} . Thus, if m ( B ) ≤ δ {\displaystyle m(B)\leq \delta } and k ≥ k 0 {\displaystyle k\geq k_{0}} then | λ k ( B ) | ≤ | λ k 0 ( B ) | + | λ k 0 ( B ) − λ k ( B ) | ≤ | λ k 0 ( B ) | + | λ k 0 ( B 1 ) − λ k ( B 1 ) | + | λ k 0 ( B 2 ) − λ k ( B 2 ) | ≤ | λ k 0 ( B ) | + 2 ϵ {\displaystyle {\begin{aligned}|\lambda _{k}(B)|&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B)-\lambda _{k}(B)|\\&\leq |\lambda _{k_{0}}(B)|+|\lambda _{k_{0}}(B_{1})-\lambda _{k}(B_{1})|+|\lambda _{k_{0}}(B_{2})-\lambda _{k}(B_{2})|\\&\leq |\lambda _{k_{0}}(B)|+2\epsilon \end{aligned}}} Therefore, by the absolute continuity of λ k 0 {\displaystyle \lambda _{k_{0}}} with respect to m {\displaystyle m} , and since ϵ {\displaystyle \epsilon } is arbitrary, we get that m ( B ) → 0 {\displaystyle m(B)\to 0} implies λ n ( B ) → 0 {\displaystyle \lambda _{n}(B)\to 0} uniformly in n . {\displaystyle n.} In particular, m ( B ) → 0 {\displaystyle m(B)\to 0} implies λ ( B ) → 0. {\displaystyle \lambda (B)\to 0.}
By the additivity of the limit it follows that λ {\displaystyle \lambda } is finitely-additive . Then, since lim m ( B ) → 0 λ ( B ) = 0 {\displaystyle \lim _{m(B)\to 0}\lambda (B)=0} it follows that λ {\displaystyle \lambda } is actually countably additive.
Hahn, H. (1922), "Über Folgen linearer Operationen" , Monatsh. Math. (in German), 32 : 3– 88, doi :10.1007/bf01696876 Saks, Stanislaw (1933), "Addition to the Note on Some Functionals", Transactions of the American Mathematical Society , 35 (4): 965– 970, doi :10.2307/1989603 , JSTOR 1989603 Vitali, G. (1907), "Sull' integrazione per serie" , Rendiconti del Circolo Matematico di Palermo (in Italian), 23 : 137– 155, doi :10.1007/BF03013514 Yosida, K. (1971), Functional Analysis , Springer, pp. 70– 71, ISBN 0-387-05506-1