Table of Clebsch–Gordan coefficients

This is a table of Clebsch–Gordan coefficients used for adding angular momentum values in quantum mechanics. The overall sign of the coefficients for each set of constant , , is arbitrary to some degree and has been fixed according to the Condon–Shortley and Wigner sign convention as discussed by Baird and Biedenharn.[1] Tables with the same sign convention may be found in the Particle Data Group's Review of Particle Properties[2] and in online tables.[3]

Formulation[edit]

The Clebsch–Gordan coefficients are the solutions to

Explicitly:

The summation is extended over all integer k for which the argument of every factorial is nonnegative.[4]

For brevity, solutions with M < 0 and j1 < j2 are omitted. They may be calculated using the simple relations

and

Specific values[edit]

The Clebsch–Gordan coefficients for j values less than or equal to 5/2 are given below.[5]

 j2 = 0[edit]

When j2 = 0, the Clebsch–Gordan coefficients are given by .

 j1 = 1/2j2 = 1/2[edit]

m = 1
j
m1m2
1
1/21/2
m = −1
j
m1m2
1
1/2, −1/2
m = 0
j
m1m2
1 0
1/2, −1/2
1/21/2

 j1 = 1,  j2 = 1/2[edit]

m = 3/2
j
m1m2
3/2
1, 1/2
m = 1/2
j
m1m2
3/2 1/2
1, −1/2
0, 1/2

 j1 = 1,  j2 = 1[edit]

m = 2
j
m1m2
2
1, 1
m = 1
j
m1m2
2 1
1, 0
0, 1
m = 0
j
m1m2
2 1 0
1, −1
0, 0
−1, 1

 j1 = 3/2j2 = 1/2[edit]

m = 2
j
m1m2
2
3/21/2
m = 1
j
m1m2
2 1
3/2, −1/2
1/21/2
m = 0
j
m1m2
2 1
1/2, −1/2
1/21/2

 j1 = 3/2j2 = 1[edit]

m = 5/2
j
m1m2
5/2
3/2, 1
m = 3/2
j
m1m2
5/2 3/2
3/2, 0
1/2, 1
m = 1/2
j
m1m2
5/2 3/2 1/2
3/2, −1
1/2, 0
1/2, 1

 j1 = 3/2j2 = 3/2[edit]

m = 3
j
m1m2
3
3/23/2
m = 2
j
m1m2
3 2
3/21/2
1/23/2
m = 1
j
m1m2
3 2 1
3/2, −1/2
1/21/2
1/23/2
m = 0
j
m1m2
3 2 1 0
3/2, −3/2
1/2, −1/2
1/21/2
3/23/2

 j1 = 2,  j2 = 1/2[edit]

m = 5/2
j
m1m2
5/2
2, 1/2
m = 3/2
j
m1m2
5/2 3/2
2, −1/2
1, 1/2
m = 1/2
j
m1m2
5/2 3/2
1, −1/2
0, 1/2

 j1 = 2,  j2 = 1[edit]

m = 3
j
m1m2
3
2, 1
m = 2
j
m1m2
3 2
2, 0
1, 1
m = 1
j
m1m2
3 2 1
2, −1
1, 0
0, 1
m = 0
j
m1m2
3 2 1
1, −1
0, 0
−1, 1

 j1 = 2,  j2 = 3/2[edit]

m = 7/2
j
m1m2
7/2
2, 3/2
m = 5/2
j
m1m2
7/2 5/2
2, 1/2
1, 3/2
m = 3/2
j
m1m2
7/2 5/2 3/2
2, −1/2
1, 1/2
0, 3/2
m = 1/2
j
m1m2
7/2 5/2 3/2 1/2
2, −3/2
1, −1/2
0, 1/2
−1, 3/2

 j1 = 2,  j2 = 2[edit]

m = 4
j
m1m2
4
2, 2
m = 3
j
m1m2
4 3
2, 1
1, 2
m = 2
j
m1m2
4 3 2
2, 0
1, 1
0, 2
m = 1
j
m1m2
4 3 2 1
2, −1
1, 0
0, 1
−1, 2
m = 0
j
m1m2
4 3 2 1 0
2, −2
1, −1
0, 0
−1, 1
−2, 2

 j1 = 5/2j2 = 1/2[edit]

m = 3
j
m1m2
3
5/21/2
m = 2
j
m1m2
3 2
5/2, −1/2
3/21/2
m = 1
j
m1m2
3 2
3/2, −1/2
1/21/2
m = 0
j
m1m2
3 2
1/2, −1/2
1/21/2

 j1 = 5/2j2 = 1[edit]

m = 7/2
j
m1m2
7/2
5/2, 1
m = 5/2
j
m1m2
7/2 5/2
5/2, 0
3/2, 1
m = 3/2
j
m1m2
7/2 5/2 3/2
5/2, −1
3/2, 0
1/2, 1
m = 1/2
j
m1m2
7/2 5/2 3/2
3/2, −1
1/2, 0
1/2, 1

 j1 = 5/2j2 = 3/2[edit]

m = 4
j
m1m2
4
5/23/2
m = 3
j
m1m2
4 3
5/21/2
3/23/2
m = 2
j
m1m2
4 3 2
5/2, −1/2
3/21/2
1/23/2
m = 1
j
m1m2
4 3 2 1
5/2, −3/2
3/2, −1/2
1/21/2
1/23/2
m = 0
j
m1m2
4 3 2 1
3/2, −3/2
1/2, −1/2
1/21/2
3/23/2

 j1 = 5/2j2 = 2[edit]

m = 9/2
j
m1m2
9/2
5/2, 2
m = 7/2
j
m1m2
9/2 7/2
5/2, 1
3/2, 2
m = 5/2
j
m1m2
9/2 7/2 5/2
5/2, 0
3/2, 1
1/2, 2
m = 3/2
j
m1m2
9/2 7/2 5/2 3/2
5/2, −1
3/2, 0
1/2, 1
1/2, 2
m = 1/2
j
m1m2
9/2 7/2 5/2 3/2 1/2
5/2, −2
3/2, −1
1/2, 0
1/2, 1
3/2, 2

 j1 = 5/2j2 = 5/2[edit]

m = 5
j
m1m2
5
5/25/2
m = 4
j
m1m2
5 4
5/23/2
3/25/2
m = 3
j
m1m2
5 4 3
5/21/2
3/23/2
1/25/2
m = 2
j
m1m2
5 4 3 2
5/2, −1/2
3/21/2
1/23/2
1/25/2
m = 1
j
m1m2
5 4 3 2 1
5/2, −3/2
3/2, −1/2
1/21/2
1/23/2
3/25/2
m = 0
j
m1m2
5 4 3 2 1 0
5/2, −5/2
3/2, −3/2
1/2, −1/2
1/21/2
3/23/2
5/25/2

SU(N) Clebsch–Gordan coefficients[edit]

Algorithms to produce Clebsch–Gordan coefficients for higher values of