Result due to Kummer on cyclic extensions of fields that leads to Kummer theory
In abstract algebra , Hilbert's Theorem 90 (or Satz 90 ) is an important result on cyclic extensions of fields (or to one of its generalizations) that leads to Kummer theory . In its most basic form, it states that if L /K is an extension of fields with cyclic Galois group G = Gal(L /K ) generated by an element σ , {\displaystyle \sigma ,} and if a {\displaystyle a} is an element of L of relative norm 1, that is
N ( a ) := a σ ( a ) σ 2 ( a ) ⋯ σ n − 1 ( a ) = 1 , {\displaystyle N(a):=a\,\sigma (a)\,\sigma ^{2}(a)\cdots \sigma ^{n-1}(a)=1,}
then there exists b {\displaystyle b} in L such that
a = b / σ ( b ) . {\displaystyle a=b/\sigma (b).}
The theorem takes its name from the fact that it is the 90th theorem in David Hilbert 's Zahlbericht (Hilbert 1897 , 1998 ), although it is originally due to Kummer (1855 , p.213, 1861 ).
Often a more general theorem due to Emmy Noether (1933 ) is given the name, stating that if L /K is a finite Galois extension of fields with arbitrary Galois group G = Gal(L /K ), then the first cohomology group of G , with coefficients in the multiplicative group of L , is trivial:
H 1 ( G , L × ) = { 1 } . {\displaystyle H^{1}(G,L^{\times })=\{1\}.} Let L / K {\displaystyle L/K} be the quadratic extension Q ( i ) / Q {\displaystyle \mathbb {Q} (i)/\mathbb {Q} } . The Galois group is cyclic of order 2, its generator σ {\displaystyle \sigma } acting via conjugation:
σ : c + d i ↦ c − d i . {\displaystyle \sigma :c+di\mapsto c-di.} An element a = x + y i {\displaystyle a=x+yi} in Q ( i ) {\displaystyle \mathbb {Q} (i)} has norm a σ ( a ) = x 2 + y 2 {\displaystyle a\sigma (a)=x^{2}+y^{2}} . An element of norm one thus corresponds to a rational solution of the equation x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} or in other words, a point with rational coordinates on the unit circle . Hilbert's Theorem 90 then states that every such element a of norm one can be written as
a = c − d i c + d i = c 2 − d 2 c 2 + d 2 − 2 c d c 2 + d 2 i , {\displaystyle a={\frac {c-di}{c+di}}={\frac {c^{2}-d^{2}}{c^{2}+d^{2}}}-{\frac {2cd}{c^{2}+d^{2}}}i,} where b = c + d i {\displaystyle b=c+di} is as in the conclusion of the theorem, and c and d are both integers. This may be viewed as a rational parametrization of the rational points on the unit circle. Rational points ( x , y ) = ( p / r , q / r ) {\displaystyle (x,y)=(p/r,q/r)} on the unit circle x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} correspond to Pythagorean triples , i.e. triples ( p , q , r ) {\displaystyle (p,q,r)} of integers satisfying p 2 + q 2 = r 2 {\displaystyle p^{2}+q^{2}=r^{2}} .
The theorem can be stated in terms of group cohomology : if L × is the multiplicative group of any (not necessarily finite) Galois extension L of a field K with corresponding Galois group G , then
H 1 ( G , L × ) = { 1 } . {\displaystyle H^{1}(G,L^{\times })=\{1\}.} Specifically, group cohomology is the cohomology of the complex whose i- cochains are arbitrary functions from i -tuples of group elements to the multiplicative coefficient group, C i ( G , L × ) = { ϕ : G i → L × } {\displaystyle C^{i}(G,L^{\times })=\{\phi :G^{i}\to L^{\times }\}} , with differentials d i : C i → C i + 1 {\displaystyle d^{i}:C^{i}\to C^{i+1}} defined in dimensions i = 0 , 1 {\displaystyle i=0,1} by:
( d 0 ( b ) ) ( σ ) = b / b σ , and ( d 1 ( ϕ ) ) ( σ , τ ) = ϕ ( σ ) ϕ ( τ ) σ / ϕ ( σ τ ) , {\displaystyle (d^{0}(b))(\sigma )=b/b^{\sigma },\quad {\text{ and }}\quad (d^{1}(\phi ))(\sigma ,\tau )\,=\,\phi (\sigma )\phi (\tau )^{\sigma }/\phi (\sigma \tau ),}
where x g {\displaystyle x^{g}} denotes the image of the G {\displaystyle G} -module element x {\displaystyle x} under the action of the group element g ∈ G {\displaystyle g\in G} . Note that in the first of these we have identified a 0-cochain γ = γ b : G 0 = i d G → L × {\displaystyle \gamma =\gamma _{b}:G^{0}=id_{G}\to L^{\times }} , with its unique image value b ∈ L × {\displaystyle b\in L^{\times }} . The triviality of the first cohomology group is then equivalent to the 1-cocycles Z 1 {\displaystyle Z^{1}} being equal to the 1-coboundaries B 1 {\displaystyle B^{1}} , viz.:
Z 1 = ker d 1 = { ϕ ∈ C 1 satisfying ∀ σ , τ ∈ G : ϕ ( σ τ ) = ϕ ( σ ) ϕ ( τ ) σ } is equal to B 1 = im d 0 = { ϕ ∈ C 1 : ∃ b ∈ L × such that ϕ ( σ ) = b / b σ ∀ σ ∈ G } . {\displaystyle {\begin{array}{rcl}Z^{1}&=&\ker d^{1}&=&\{\phi \in C^{1}{\text{ satisfying }}\,\,\forall \sigma ,\tau \in G\,\colon \,\,\phi (\sigma \tau )=\phi (\sigma )\,\phi (\tau )^{\sigma }\}\\{\text{ is equal to }}\\B^{1}&=&{\text{im }}d^{0}&=&\{\phi \in C^{1}\ \,\colon \,\,\exists \,b\in L^{\times }{\text{ such that }}\phi (\sigma )=b/b^{\sigma }\ \ \forall \sigma \in G\}.\end{array}}}
For cyclic G = { 1 , σ , … , σ n − 1 } {\displaystyle G=\{1,\sigma ,\ldots ,\sigma ^{n-1}\}} , a 1-cocycle is determined by ϕ ( σ ) = a ∈ L × {\displaystyle \phi (\sigma )=a\in L^{\times }} , with ϕ ( σ i ) = a σ ( a ) ⋯ σ i − 1 ( a ) {\displaystyle \phi (\sigma ^{i})=a\,\sigma (a)\cdots \sigma ^{i-1}(a)} and:
1 = ϕ ( 1 ) = ϕ ( σ n ) = a σ ( a ) ⋯ σ n − 1 ( a ) = N ( a ) . {\displaystyle 1=\phi (1)=\phi (\sigma ^{n})=a\,\sigma (a)\cdots \sigma ^{n-1}(a)=N(a).}
On the other hand, a 1-coboundary is determined by ϕ ( σ ) = b / b σ {\displaystyle \phi (\sigma )=b/b^{\sigma }} . Equating these gives the original version of the Theorem.
A further generalization is to cohomology with non-abelian coefficients : that if H is either the general or special linear group over L , including GL 1 ( L ) = L × {\displaystyle \operatorname {GL} _{1}(L)=L^{\times }} , then
H 1 ( G , H ) = { 1 } . {\displaystyle H^{1}(G,H)=\{1\}.}
Another generalization is to a scheme X :
H et 1 ( X , G m ) = H 1 ( X , O X × ) = Pic ( X ) , {\displaystyle H_{\text{et}}^{1}(X,\mathbb {G} _{m})=H^{1}(X,{\mathcal {O}}_{X}^{\times })=\operatorname {Pic} (X),} where Pic ( X ) {\displaystyle \operatorname {Pic} (X)} is the group of isomorphism classes of locally free sheaves of O X × {\displaystyle {\mathcal {O}}_{X}^{\times }} -modules of rank 1 for the Zariski topology, and G m {\displaystyle \mathbb {G} _{m}} is the sheaf defined by the affine line without the origin considered as a group under multiplication. [ 1]
There is yet another generalization to Milnor K-theory which plays a role in Voevodsky's proof of the Milnor conjecture .
Let L / K {\displaystyle L/K} be cyclic of degree n , {\displaystyle n,} and σ {\displaystyle \sigma } generate Gal ( L / K ) {\displaystyle \operatorname {Gal} (L/K)} . Pick any a ∈ L {\displaystyle a\in L} of norm
N ( a ) := a σ ( a ) σ 2 ( a ) ⋯ σ n − 1 ( a ) = 1. {\displaystyle N(a):=a\sigma (a)\sigma ^{2}(a)\cdots \sigma ^{n-1}(a)=1.} By clearing denominators, solving a = x / σ − 1 ( x ) ∈ L {\displaystyle a=x/\sigma ^{-1}(x)\in L} is the same as showing that a σ − 1 ( ⋅ ) : L → L {\displaystyle a\sigma ^{-1}(\cdot ):L\to L} has 1 {\displaystyle 1} as an eigenvalue. We extend this to a map of L {\displaystyle L} -vector spaces via
{ 1 L ⊗ a σ − 1 ( ⋅ ) : L ⊗ K L → L ⊗ K L ℓ ⊗ ℓ ′ ↦ ℓ ⊗ a σ − 1 ( ℓ ′ ) . {\displaystyle {\begin{cases}1_{L}\otimes a\sigma ^{-1}(\cdot ):L\otimes _{K}L\to L\otimes _{K}L\\\ell \otimes \ell '\mapsto \ell \otimes a\sigma ^{-1}(\ell ').\end{cases}}} The primitive element theorem gives L = K ( α ) {\displaystyle L=K(\alpha )} for some α {\displaystyle \alpha } . Since α {\displaystyle \alpha } has minimal polynomial
f ( t ) = ( t − α ) ( t − σ ( α ) ) ⋯ ( t − σ n − 1 ( α ) ) ∈ K [ t ] , {\displaystyle f(t)=(t-\alpha )(t-\sigma (\alpha ))\cdots \left(t-\sigma ^{n-1}(\alpha )\right)\in K[t],} we can identify
L ⊗ K L → ∼ L ⊗ K K [ t ] / f ( t ) → ∼ L [ t ] / f ( t ) → ∼ L n {\displaystyle L\otimes _{K}L{\stackrel {\sim }{\to }}L\otimes _{K}K[t]/f(t){\stackrel {\sim }{\to }}L[t]/f(t){\stackrel {\sim }{\to }}L^{n}} via
ℓ ⊗ p ( α ) ↦ ℓ ( p ( α ) , p ( σ α ) , … , p ( σ n − 1 α ) ) . {\displaystyle \ell \otimes p(\alpha )\mapsto \ell \left(p(\alpha ),p(\sigma \alpha ),\ldots ,p(\sigma ^{n-1}\alpha )\right).} Here we wrote the second factor as a K {\displaystyle K} -polynomial in α {\displaystyle \alpha } .
Under this identification, our map becomes
{ a σ − 1 ( ⋅ ) : L n → L n ℓ ( p ( α ) , … , p ( σ n − 1 α ) ) ↦ ℓ ( a p ( σ n − 1 α ) , σ a p ( α ) , … , σ n − 1 a p ( σ n − 2 α ) ) . {\displaystyle {\begin{cases}a\sigma ^{-1}(\cdot ):L^{n}\to L^{n}\\\ell \left(p(\alpha ),\ldots ,p(\sigma ^{n-1}\alpha ))\mapsto \ell (ap(\sigma ^{n-1}\alpha ),\sigma ap(\alpha ),\ldots ,\sigma ^{n-1}ap(\sigma ^{n-2}\alpha )\right).\end{cases}}} That is to say under this map
( ℓ 1 , … , ℓ n ) ↦ ( a ℓ n , σ a ℓ 1 , … , σ n − 1 a ℓ n − 1 ) . {\displaystyle (\ell _{1},\ldots ,\ell _{n})\mapsto (a\ell _{n},\sigma a\ell _{1},\ldots ,\sigma ^{n-1}a\ell _{n-1}).} ( 1 , σ a , σ a σ 2 a , … , σ a ⋯ σ n − 1 a ) {\displaystyle (1,\sigma a,\sigma a\sigma ^{2}a,\ldots ,\sigma a\cdots \sigma ^{n-1}a)} is an eigenvector with eigenvalue 1 {\displaystyle 1} iff a {\displaystyle a} has norm 1 {\displaystyle 1} .
Hilbert, David (1897), "Die Theorie der algebraischen Zahlkörper" , Jahresbericht der Deutschen Mathematiker-Vereinigung (in German), 4 : 175– 546, ISSN 0012-0456 Hilbert, David (1998), The theory of algebraic number fields , Berlin, New York: Springer-Verlag , ISBN 978-3-540-62779-1 , MR 1646901 Kummer, Ernst Eduard (1855), "Über eine besondere Art, aus complexen Einheiten gebildeter Ausdrücke." , Journal für die reine und angewandte Mathematik (in German), 50 : 212– 232, doi :10.1515/crll.1855.50.212 , ISSN 0075-4102 Kummer, Ernst Eduard (1861), "Zwei neue Beweise der allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen, deren Grad eine Primzahl ist" , Abdruck aus den Abhandlungen der KGL. Akademie der Wissenschaften zu Berlin (in German), Reprinted in volume 1 of his collected works, pages 699–839 Chapter II of J.S. Milne, Class Field Theory , available at his website [1] . Neukirch, Jürgen ; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields , Grundlehren der Mathematischen Wissenschaften , vol. 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4 , MR 1737196 , Zbl 0948.11001 Noether, Emmy (1933), "Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper." , Mathematische Annalen (in German), 108 (1): 411– 419, doi :10.1007/BF01452845 , ISSN 0025-5831 , Zbl 0007.29501 Snaith, Victor P. (1994), Galois module structure , Fields Institute monographs, Providence, RI: American Mathematical Society , ISBN 0-8218-0264-X , Zbl 0830.11042 Wikisource has original text related to this article: